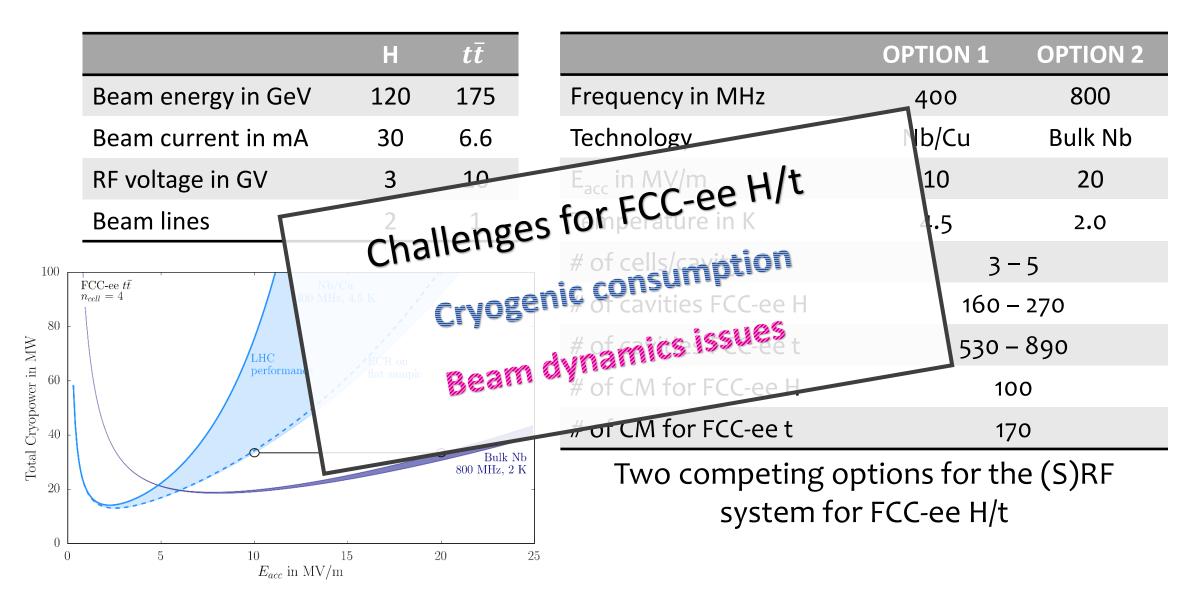

What is the total RF requirement for FCC Higgs Factory? How many 400 MHz and 800 MHz cells will be required? What are the development challenges? What is the cost impact of Nb/Cu film technology for FCC?

GARD-SRF Roadmap Workshop 9-10 February 2017, FNAL Sarah Aull & Frank Gerigk (CERN)

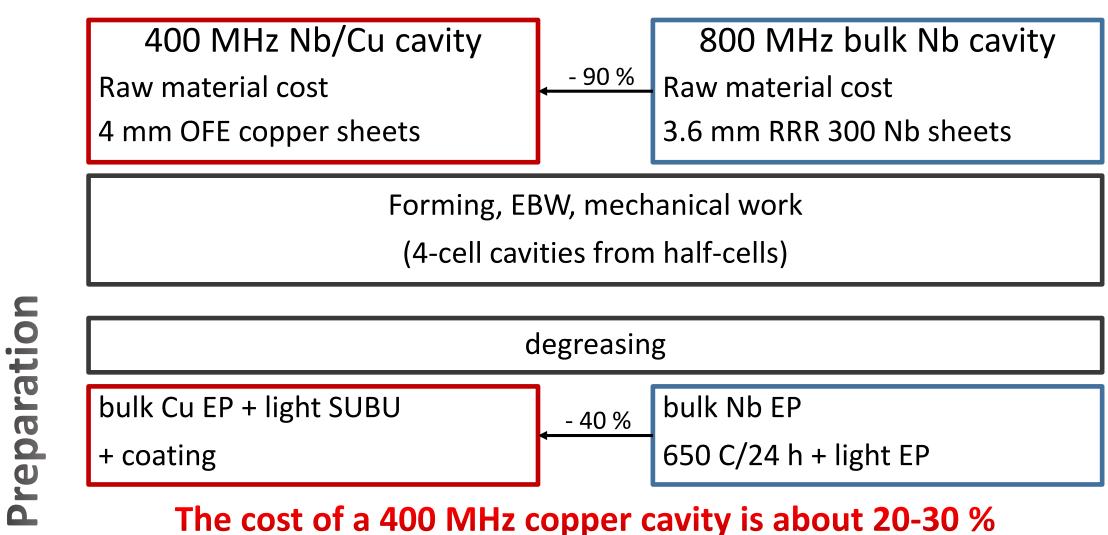
> Contributions from: CERN/EN-MME: S. Atieh, G. Favre, P. Yilmazer CERN/TE-VSC: S. Calatroni, L. Ferreira, G. Rosaz, A. Sublet CERN/BE-RF: O. Brunner, N. Schwerg, W. Venturini

RF requirement for FCC-ee Higgs (and top)

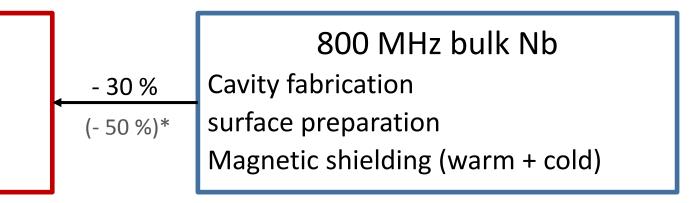

	Н	tĪ
Beam energy in GeV	120	175
Beam current in mA	30	6.6
RF voltage in GV	3	10
Beam lines	2	1

	OPTION 1	OPTION 2					
Frequency in MHz	400	800					
Technology	Nb/Cu	Bulk Nb					
E _{acc} in MV/m	10	20					
Temperature in K	4.5	2.0					
# of cells/cavity	3 -	3 - 5					
# of cavities FCC H	160 -	160 – 270					
# of cavities FCC t	530 -	530 – 890					
# of CM for FCC H	10	100					
# of CM for FCC t	17	170					
Two composing options for the (S)PE							

Two competing options for the (S)RF system for FCC-ee H/t


RF requirement for FCC-ee Higgs (and top)

urface


0

less than for a 800 MHz bulk Nb

Cryomodule Cost

400 MHz Nb/Cu Cavity fabrication surface preparation & coating

* For seamless cavities and forming cost reduced by 50 %

4 cavities, 4 He tanks,

4 FPC, 8 HOM coupler, 4 tuner

1 cryostat, 2 cryo valves

The cost for a CM with 400 MHz Nb/Cu cavities is 25-40 % less than for a CM with 800 MHz bulk Nb cavities

Cryogenic Plant: Tooling Chemical Hazards 4.5 K vs 2.0 K Raw material Clean room Seamless Helium distribution: requirements for avities 10 MV/m @ 400 MHz Micro-4.5 K vs 2.0 K phonics New forming vs 20 MV/m @ 800 MHz Cost for techniques Coating What's missing **Beam dynamics cost** R&D Underground space for a 400 **RF Power Sources:** MHz vs a 800 MHz system 400 MHz vs 800 MHz

Summary: FCC RF Parameters

RF Parameters - summary table (6/2/2017)

	FCC_hh	Z		w		н	н			
Ibeam [mA]		1450.0		152.0	152.0		30.0		6.6	
Nb bunches		91500	91500 30180		5162		770		78	
RF voltage [GV]	0.03	0.20	0.40	0.80		3.00	3.00		10.00	
Energy loss/turn [GeV]		0.03	0.03	0.33		1.67	1.67		7.50	
Bunch Length (mm)		3.00	1.60	3.00		3.00	3.00		3.00	
frequency [MHz]	400	400	400	400	400	400	800	400	800	
cavity technology	Nb/Cu	Nb/Cu	Nb/Cu	Nb/Cu	Nb/Cu	Nb/Cu	Nb	Nb/Cu	Nb	
operating temp	4.5	4.5	4.5	4.5	4.5	4.5	2.0	4.5	2.0	
accelerating gradient [MV/m]	10	10	10	10	10	10	20	10	20	
Nb cavities	32/beam	54/beam	107/beam	214/beam	107/beam	200/beam	200/beam	667	667	
Nb cell / cav	1	1	1	1	2	4	4	4	4	
coupler type	movable	fixed	fixed		fixed		fixed		fixed	
power per cavity [kW]	500	924	462	235	470	251	251	75	75	
Q _{ext} matched	2E4 - 9E4	1.7E+05	3.5E+05	6.9E+05	7.0E+05	2.6E+06	2.6E+06	8.9E+06	8.9E+06	
RF system length [m]	41	68	136	272	176	480	330	1600	1100	
Pcryo tot [MW] @ RT	0.6	1.6	4.1	2.9	2.9	9.8	9.3	32.5	30.0	