What is the timeline and milestone path to a machine with films technology with $E_{acc} > 16$ MV/m, and Q > 1.5 10^{10} ?

GARD-SRF Roadmap Workshop 9-10 February 2017, Fermilab Sarah Aull (CERN)

> Contributions from: CERN/TE-VSC: S. Calatroni, G. Rosaz, A. Sublet CERN/BE-RF: O. Brunner, W. Venturini

Target Performance for the Thin Film Development

- Frequency options for FCC are restricted to low/medium frequencies (beam dynamics)
- 400 MHz at 4.5 K seems to be the Nb/Cu option of highest interest (and in closest reach)
- High frequency at low temperature further down the road (and for high turn around during R&D phase)

Mid-term goal 400 MHz, 4.5 K 2-3·10⁹ at 10-20 MV/m

Long-term goal 2 K performance close to bulk Nb up to 20 MV/m

Long-term goal Nb₃Sn/Cu and/or V₃Si/Cu at 4.5 K beyond Nb RF Parameters - summary table (6/2/2017)

	н		t	t	
Ibeam [mA]	30.0		6.6	6.6	
Nb bunches	770		78	78	
RF voltage [GV]	3.00		10.00	10.00	
Energy loss/turn [GeV]	1.67		7.50	7.50	
Bunch Length (mm)	3.00		3.00	3.00	
frequency [MHz]	400	800	400	800	
cavity technology	Nb/Cu	Nb	Nb/Cu	Nb	
operating temp	4.5	2.0	4.5	2.0	
accelerating gradient [MV/m]	10	20	10	20	
Nb cavities	200/beam	200/beam	667	667	
Nb cell / cav	4	4	4	4	

Nb/Cu R&D on 1.5 GHz Cavities (until 2001)

Full exploration of magnetron sputtering on 1.5 GHz single cell cavities

Milestones:

- ✓ Seamless cavity fabrication (spinning)
- ✓ Surface preparation (EP + SUBU)
- ✓ Coating parameters

Manpower:

- ✓ 4 people on the coating side (incl substrate preparation)
- \checkmark 1-2 technicians for surface chemistry
- \checkmark 3-4 people on the RF/cold test side

Timeline:

✓ About 300 coatings over 5 years

Timeline for FCC

Seamless cavities:

- ✓ 1.3 GHz single cell cavities for R&D
- ✓ 400 MHz single cell: under study
- ✓ 800 MHz single/multicell: under study
- Electro-polishing:
- ✓ 1.3 GHz single cell
- ✓ 400 MHz single cell: planned
- ✓ 800 MHz single/multicell: planned
- Coating benches:
- ✓ 1.3 GHz single cell (HIPIMS & DCMS)
- ✓ 400 MHz single cell (DCMS, can be upgraded for HIPIMS)
- ✓ 800 MHz multicell: under design

Now is the time to plan for the period 2035 – 2040

NV Future Circular Collider Study Michael Benedikt 2rd FCC Week, Rome, April 2015