# What is the timeline and milestone path to a machine with films technology with E<sub>acc</sub> >16 MV/m, and Q>1.5e<sup>10</sup>?

## A perspective on Nb films on Cu cavities

- Basic material processes exist
  - proof-of-principle demonstrations for modest field applications
- Principal present challenges
  - Establish adequate process controls
  - Address technical challenges with scale-up
  - Though not fundamental, these require serious resource investment to establish "industrial" capability.
  - Half-hearted effort not worth doing, won't reach the goal. Resources drive the timeline.
- So, tool-up for the big cavities and refine process parameters in parallel on smaller scales.
- Done right, also a reasonable stepping stone to truly "engineered surface", with all the benefits of high Q, high field, low cost, and high reliability systems.

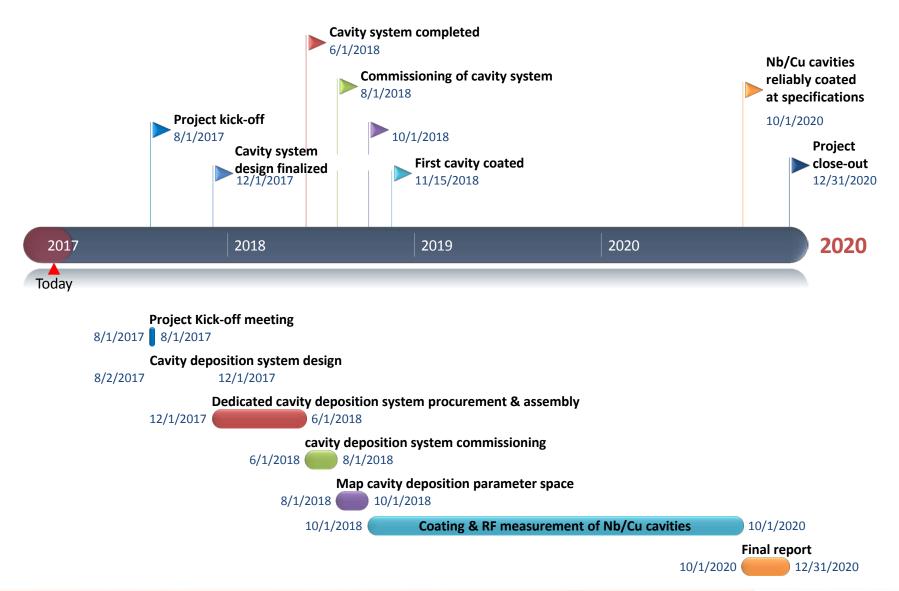


# What is the timeline and milestone path to a machine with films technology with E<sub>acc</sub> >16 MV/m, and Q>1.5e<sup>10</sup>?

Scale of efforts required for aggressive timeline for production readiness

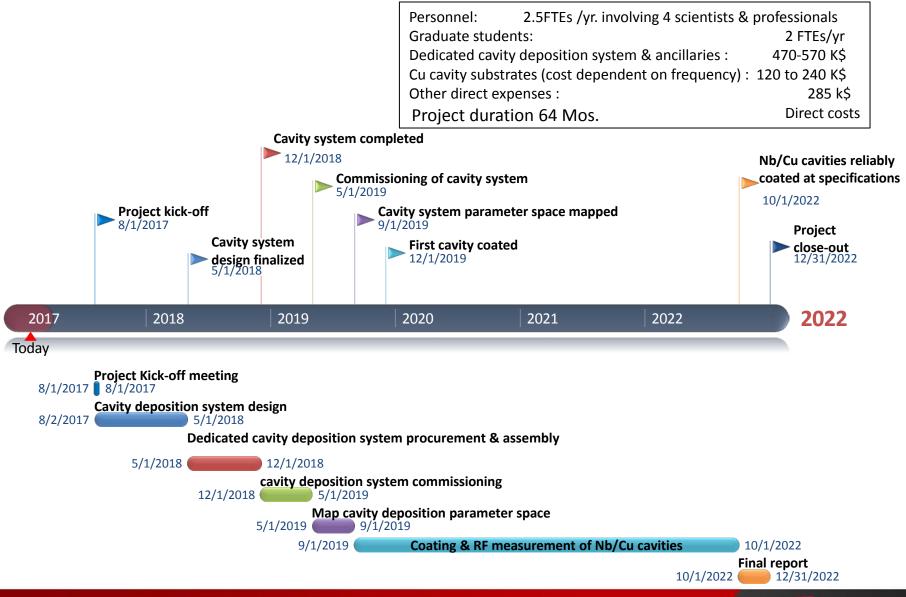
- Build a dedicated UHV cavity coating system based on Nb Energetic condensation technology
- Coat cavities (1- & multi-cells):
  - > 1<sup>st</sup> cavity coated by end of 2018
  - Coating rate: 1.5 2 cavities/wk depending on frequency 100-150 coated cavity cycles
  - Tight coordination between substrate preparation, coating cycle and RF measurement (RF feedback needs to be timely, within 1 wk)
  - Specs [with E<sub>acc</sub> >16 MV/m, and Q>1.5e<sup>10</sup>] consistently achieved by end of 2020
- Develop Cu cavity electropolishing facility in parallel with deposition system
- Film material analyses in parallel for process parameter guidance

Assumes personnel has EC Nb film coating , cavity coating & UHV proficient skills on day 1 Assumes prior investments in utilities & infrastructures already in place:


- ✓ RF testing facility (dewar, RF power...) able to accommodate up to 4-cell 400 MHz cavities
- Cooling water and power in coating facility
- HPWR and cleanroom infrastructures

| Personnel:                                                                                              | 5FTEs /yr. involving 7-8 scientists & professionals |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Graduate students:                                                                                      | 2 FTEs/yr                                           |  |  |  |  |
| Dedicated cavity deposition system & ancillaries (portable cleanroom/substrate inspection): 470-570 K\$ |                                                     |  |  |  |  |
| Cu cavity substrates (cost dependent on frequency) :                                                    | 120 to 240 K\$                                      |  |  |  |  |
| Other direct expenses (supplies, machine shop, mate                                                     | erial analyses): 285 k\$                            |  |  |  |  |
| Project duration 40 Mos.                                                                                | Direct costs                                        |  |  |  |  |




#### **Focused Timeline**

Assumes Nb film, cavity coating and UHV proficient skills available on day 1 Assumes adequate funding on day 1 for personnel and procurements



### **Alternate Timeline**

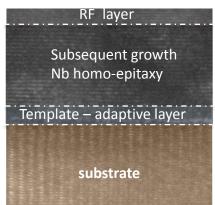
### Assumes Nb film, cavity coating and UHV proficient skills available on day 1 Half manpower & same procurements

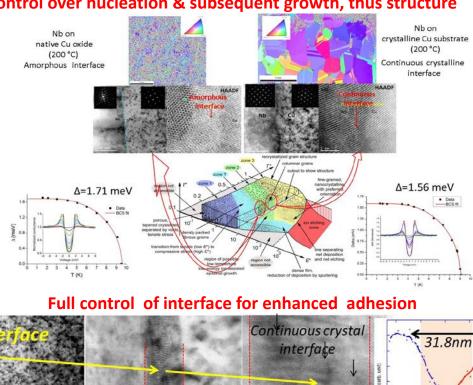


A-M Valente-Feliciano, C Reece

## Why energetic condensation?

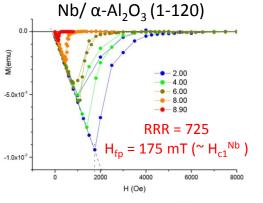
interface

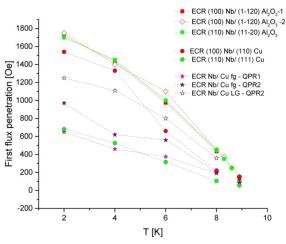

#### Enable excellent crystal structure for optimum RF performance


Interface Film nucleation

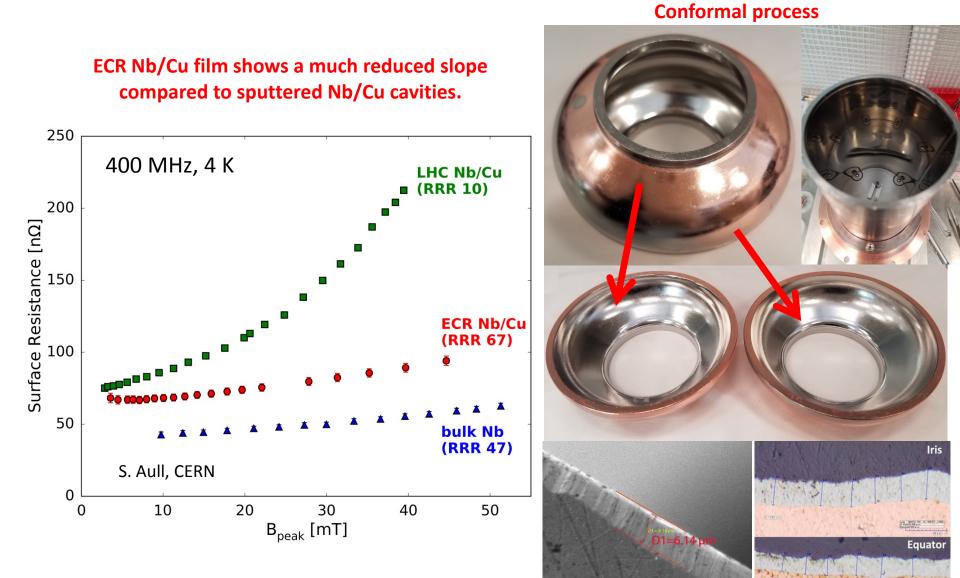
### Sequential phases for film growth

- Growth of appropriate template for subsequent deposition
- Deposition of final surface optimized for minimum defect density.


#### Full control over final SRF performance with strict process protocols





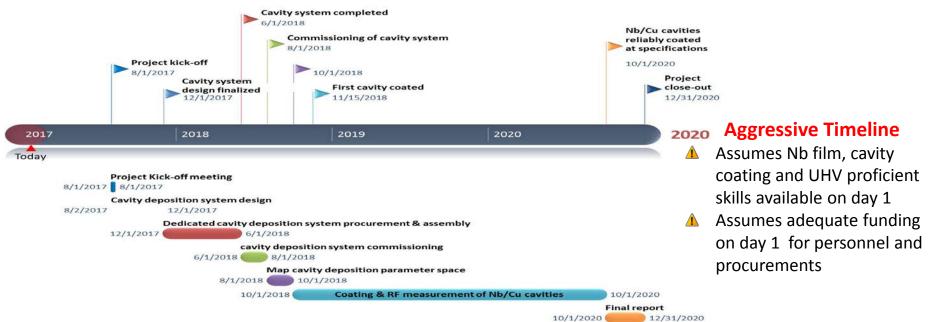


#### Control over nucleation & subsequent growth, thus structure

#### Flux Penetration comparable to H<sub>c1</sub> for bulk Nb





# Why energetic condensation?



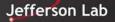

# **Existing Infrastructure**

Location reserved for scale-up cavity deposition system

Present cavity HiPIMS system with LSF Cu cavity – Matt Burton's PhD thesis work

### Timeline & Budget for Nb/Cu cavity development (based on 400 MHz)




| 400 MHZ cavity coating development : 40 Mos.      | TOTAL |             | YEAR 1 |             | YEAR 2 |             | YEAR 3 |             | YEAR 4 |           |
|---------------------------------------------------|-------|-------------|--------|-------------|--------|-------------|--------|-------------|--------|-----------|
| SENIOR PERSONNEL                                  | CAL   |             | CAL    |             | CAL    |             | CAL    |             | CAL    |           |
| Scientists                                        | 90.0  | \$691,080   | 24.0   | \$177,962   | 24.0   | \$182,411   | 24.0   | \$186,972   | 18.0   | \$143,735 |
| Senior Scientists                                 | 31.0  | \$389,618   | 10.0   | \$122,394   | 10.0   | \$125,454   | 10.0   | \$128,590   | 1.0    | \$13,180  |
| (3) TOTAL SENIOR PERSONNEL                        | 121.0 | \$1,080,698 | 34.0   | \$300,356   | 34.0   | \$307,865   | 34.0   | \$315,562   | 19.0   | \$156,915 |
| OTHER PERSONNEL                                   |       |             |        |             |        |             |        |             |        |           |
| 2 OTHER PROFESSIONAL (TECHNICIAN, DESIGNER, ETC.) | 90.0  | \$449,203   | 28.0   | \$134,028   | 24.0   | \$132,169   | 26.0   | \$118,669   | 12.0   | \$64,337  |
| 2 GRADUATE STUDENTS                               | 96.00 | \$216,000   |        | \$54,000    |        | \$54,000    |        | \$54,000    |        | \$54,000  |
| TOTAL SALARIES AND WAGES (A+B)                    |       | \$1,745,901 |        | \$488,385   |        | \$494,034   |        | \$488,230   |        | \$275,252 |
| FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)      |       | \$914,881   |        | \$259,762   |        | \$263,141   |        | \$259,670   |        | \$132,309 |
| TOTAL SALARIES, WAGES AND FRINGE BENEFITS         | 307.0 | \$2,660,782 |        | \$748,147   |        | \$757,175   |        | \$747,900   |        | \$407,560 |
| Cavity coating system                             |       | \$450,000   |        | \$450,000   |        |             |        |             |        |           |
| Portable cleanroom                                |       | \$50,000    |        | \$50,000    |        |             |        |             |        |           |
| Substrate Inspection                              |       | \$70,000    |        | \$70,000    |        |             |        |             |        |           |
| 400 MHz cav                                       |       | \$240,000   |        |             |        | \$240,000   |        |             |        |           |
| TOTAL PERMANENT EQUIPMENT                         |       | \$850,000   |        | \$570,000   |        | \$240,000   |        | \$40,000    |        |           |
| TRAVEL                                            |       | \$50,000    |        | \$5,000     |        | \$8,000     |        | \$12,000    |        | \$15,000  |
| OTHER DIRECT COSTS                                |       |             |        |             |        |             |        |             |        |           |
| MATERIALS AND SUPPLIES                            |       | \$100,000   |        | \$50,000    |        | \$20,000    |        | \$20,000    |        | \$10,000  |
| CONSULTANT SERVICES                               |       | \$95,000    |        | \$30,000    |        | \$30,000    |        | \$20,000    |        | \$15,000  |
| MACHINESHOP                                       |       | \$90,000    |        | \$50,000    |        | \$10,000    |        | \$15,000    |        | \$15,000  |
| TOTAL OTHER DIRECT COSTS                          |       | \$285,000   |        | \$130,000   |        | \$60,000    |        | \$55,000    |        | \$40,000  |
| TOTAL DIRECT COSTS                                |       | \$3,845,782 |        | \$1,453,147 |        | \$1,065,175 |        | \$854,900   |        | \$462,560 |
| TOTAL INDIRECT COSTS (~60%)                       |       | \$2,150,683 |        | \$779,166   |        | \$588,371   |        | \$492,152   |        | \$285,481 |
| TOTAL COST OF PROJECT                             |       | \$5,996,465 |        | \$2,232,312 |        | \$1,653,546 |        | \$1,347,052 |        | \$748,041 |

A-M Valente-Feliciano, C Reece

# **Existing Infrastructure**



ECR cavity deposition system Under design



A-M Valente-Feliciano, C Reece