Frank Gerigk, CERN, GARD-SRF Roadmap Workshop 9-10 February 2017, FNAL

RF sources, discussion items

Material from:

Andrey Baikov, Brian Chase (FNAL), David Constable (Lancaster U), Marcos Gaspar (PSI), Igor Guzilov, Chris Lingwood (Lancaster U), Carlos Martins (ESS), Eric Montesinos (CERN), Igor Syratchev (CERN), Proton driver efficiency workshop 2016 (PSI),

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

Content

01	Klystrons
02	Gridded Tubes
03	Magnetrons
04	Solid state
05	Conclusions

Efforts towards higher efficiency

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

HEIKA collaboration

- High Efficiency International Klystron Activity (HEIKA)
- CERN, SLAC (USA), Lancaster University (UK), Cockroft Institute (UK), Thales Group, L3, ESS (SE), Moscow University of Finance & Law (RU), VDBT (RU), ...
- Close collaboration between institutes and industry.
- Use of modern beam dynamics tools to optimise efficiency rather than peak power. • Goal is to push state of the art efficiency to > 65%

RF source type	Gain [db]	Op. output power pulsed [kW]	Rise /Fall time [us]	Pulse length range [us]	Rep rate range [Hz]	Op. output power CW [kW]	Efficiency at working point [%]	High voltage needs [kV]	Frequency range [MH:
Single Beam	40-5	1000-3000	300 ns	4 ms		<1200 kW	55 (65 max)	~90-120kV	0.3GHz-1.5
MB	40-5	10,000-15,000 kW (up to 1.5 ms at least	300 ns	4 ms		< 1200 kW (no point)	60 (70 max)	~90-120kV	0.3GHz-1.5
Future Single Beam			-		_		70	40-60 kV	0.3GHz-1.5
Future MB							80	40-60 kV	0.3GHz-1.5

Some numbers

LHC ILC, 0.5 TeV •5 MW, 400 MHz, CW • RF power: 88 MW, 1.3 GHz, pulsed

FCCee, 45-175 GeV

• 100 MW, 400/800 MHz, CW

CLIC, 3 TeV

- Drive beam accelerator:
- 180 MW, 1 GHz, pulsed

particles outside of the core are focused towards the output cavity:

simulations predict efficiencies above 80%

David Constable: eeFACT16

Example Target: Proposed FCC-ee HEKCW Tube

HEIKA working team:

- I. Syratchev (CERN)
- G. Burt (Lancaster) 11.
- C. Lingwood (Lancaster)
- D. Constable (Lancaster) IV.
- V. V. Hill (Lancaster)
- R. Marchesin (Thales) VI.
- Q. Vuillemin (Thales/CERN) VII.
- VIII. A. Baikov (MUFA)
- IX. I. Guzilov (VDBT)
- Χ. C. Marrelli (ESS)
- R. Kowalczyk (L-3com) XI.
- T. Habermann (CPI) XII.
- XIII. A. Jensen (SLAC)

- 1.5MW

- ٠

- ٠

 μ K/beamx10⁶ : 0.23 N cavities: 8 Frequency: 800 MHz

Cathode loading: 2 A/cm^2 Beam radius: 3 mm - Filling factor 8 mm Length: 2.3 m Beam circle radius: 75 mm Solenoid field (2x): 600 G Solenoid radius: 150 mm Collector: common

- Nominal load: 170 kW

eeFACT16, Cockcroft Institute, Daresbury, 24-27 October 2016

VDBT S-Band BAC Klystron (I. Guzilov)

eeFACT16, Cockcroft Institute, Daresbury, 24-27 October 2016

VDBT S-Band BAC Klystron Numerical Results (I. Guzilov)

- Efficiency 77%. (1D) Klys4.5. Company code used to optimise the tube. 1.
- Efficiency 69.9%. (1D) KlypWin (A. Baikov). The code used by HEIKA study for the basic 2. design and optimisation of high efficiency klystrons.
- Efficiency 65.74%. (2D) KLYS2D is the code used at Thales. 3.

The tube is a retrofit modification (only RF circuit is replaced) of original KIU-147 MBK klystron which has an efficiency of 42%. All the used codes predicted efficiency above 60%.

Pout/(lo*Uo)=0.6989 EL.KPD=0.7231 CF=0.9954 2D KLYS2D

1D KlypWin

BAC F = 2.99850 Pe = 1.000000e+000 Ps = 1.667e+005 % = 65.74 2.5 - harm 1 harm 2 harm 4 - 10 2*10 ----- Gaps Series8 - Series 9 —— Series 10 Series 11 Series 12 0.000E+00 5.000E+01 1.000E+02 1.500E+02 2.000E+02 2.500E+02 3.000E+02 - Series 13 Z MM

VDBT S-Band BAC Klystron Experimental Results

eeFACT16, Cockcroft Institute, Daresbury, 24-27 October 2016

The best klystron performance was measured at 3.003 GHz:

- Efficiency: 59.7%
- Total current: 195 A
- Voltage: 50.25 kV
- μ K/beam =0.432
- Beam power: 9.8 MW
- RF power: 5.84 MW
- Power gain: 46.7 dB

Pushing harder. By increasing the heater current to almost saturation and restricting the voltage to be below 57 kV max:

- Current: 246.3 A
- Voltage: 56.88 kV
- Perveance /b: 0.454
- RF power: 7.01 MW
- Efficiency: 50.0%
- Reliable operation

Gridded tubes

BA

200 MHz tetrode combination in operation at the CERN SPS since 1976 (Eric Montesinos)

Tetrodes/Diacrodes

	Gain	Op. output	Rise /Fall	Pulse length	Rep rate	Op. output	Efficiency at	High voltage	Frequency	
RF source type		power pulsed	time	range	range	power CW	working point	needs	range	Comment
	լսոյ	[kW]	[us]	[us]	[Hz]	[kW]	[%]	[kV]	[MHz]	
Tetrode: state of the art	14-16	4000	ns	any	any	1500	70	10-25	30-400	
Diacrode: state of the	14-16	3000	ns	any	any	2000	70	20-30	30-400	
art										

- Diacrodes: higher power and higher frequencies possible at same efficiency, DC-RF up to 70%
- Only moderate drop in efficiency for lower output power.
- compared to klystrons (—> increase in efficiency), no RF no current.
- with saturated klystrons, or solid state).

• Tetrodes typically < 500 MHz, up to MW-range for low frequencies, DC - RF 70%

• Gridded tubes are very tolerant to HV changes (10-20%), very short rise time as

• Can be overdriven in pulsed operation to get higher output power, (not possible

Frank Gerigk, GARD-SRF, 9–10 Feb 2017, FNAL

RF source type	Gain [db]	Op. output power pulsed [kW]	Rise /Fall time [us]	Pulse length range [us]	Rep rate range [Hz]	Op. output power CW [kW]	Efficiency at working point [%]	High voltage needs [kV]	Frequency range [MHz]	Comment
IOT: state of the art	20-23	130	ns	any	any	85	70	36-38	?-1300	
MB-IOT: performance potential	20-23	1300	ns	any	any	150	70	50	704	first prototype tested

- same points as for tetrodes/diacrodes...
- ESS has ordered 2 704 MHz MB IOTs from industry (MW level).
- One tube has seen first successful tests at the supplier.
- whether to use these tubes for the high-energy part of the ESS linac.
- new ideas for 3-cavity IOTs, resotrode explored within HEIKA

OTs

• Both tubes will see a soak test at CERN in 2017, so that ESS can decide

Cross section of a typical microwave cooker magnetron (courtesy: Brian Chase, FNAL)

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Magnetrons

RF source type	Gain [db]	Op. output power pulsed [kW]	Rise /Fall time [us]	Pulse length range [us]	Rep rate range [Hz]	Op. output power CW [kW]	Efficiency at working point [%]	High voltage needs [kV]	Frequency range [MHz]	Comme
State of the art: CPI ECONCO	25	?	?	-	-	100	80	20	826 - 929	tube o
CCR/CPI	25	100	?	10 ms	10	10	80	22	1300	tube o
Performance potential?	25	100				100	60		400	AC-RF

- Proof of principle at Lancaster University
- will be reflected back from the cavities —> amplitude control with a single device.
- kW average). Current status?
- High potential for high efficiency (85%) at moderate price. Maybe not for all operational scenarios.

Magnetrons

• Phase control of 1 magnetron, using 2 magnetrons with phase control gives amplitude control. • Constant output power devices; fast phase modulation can move power into sidebands, which • Proof of principle with u-wave oven type magnetron at FNAL. 1.3 GHz, 100 kW peak power (10

: 65 kW, 500 MHz solid state amplifier at PSI (Marcos Gaspar, PSI)

Frank Gerigk, GARD-SRF, 9-10 Feb 2017, FNAL

Solid state

RF source type	Gain [db]	Op. output power pulsed	Rise /Fall time [us]	Pulse length range [us]	Rep rate range [Hz]	Op. output power CW	Efficiency at working point [%]	High voltage needs [kV]	Frequency range [MHz]	Commen
ELBE		16 kW	0.02/0.06	0.001 - 100	0-CW	16 kW	47%	-	1300	
R&K		16 kW	0.01/0.01	any	0-CW	16 kW	36%	-	1300	forced air
Tomcod		-		-	CW	10 kW	45%	-	700	up to 80 k
R&K		-		-	CW	20 kW	?	-	509	forced air
PSI		~70 kW	0.045	any	0-CW	~70 kW	~50%	_	500	grid to RF
Cryoelectra		-		-	CW	45 kW	51%	-	500	
LNLS		-		-	CW	25 kW	57%	-	472	
ESRF		70 kW		any	1 - CW	70 kW	55%	-	352	DC-RF
Soleil		30 kW		any	0-CW	30 kW	50%	-	352	DC-RF, 1
Tomco		-		-	CW	10 kW	55%	-	350	up to 11(
Cryoelectra		-		-	CW	16 kW	46%	-	118	
Siemens		-		-	CW	18 kW	75%	-	72.5	
Cryoelectra		-		-	CW	115 kW	57%	-	72.8	
R&K		60 kW		any	0-CW	60 kW	56%	-	1.8	
State of the art		10 - 100 kW	10-60 ns	any	any	10-100 kW	45-55%	-	0-1300	
potential?										
R&D: Siemens/ESS		48 kW		3000	14 Hz	-	60%	-	352	up to 400
Thales		135 kW		-	CW	135 kW			200	test at CE

Solid state

- Frequency range 0 2.5 GHz but with lower efficiency and power output/transistor for frequencies > 700 MHz,
- Can be operated at lower output power without loosing too much efficiency. • At present maximum power < 200 kW.
- Overall DC to RF efficiency ~55%.
- MHz 135 kW Thales tower under soak test at CERN, intention is to have a 2 MW
- Modular systems, hot swapping of faulty modules possible. • Newer systems make use of combining cavities instead of 2x2x2... combiners (200 system for the SPS)

Solid state

- Tetrodes, diacrodes: < 500 MHz (up to several MW, better for lower frequencies); IOTs: 500 MHz to 1.3 GHz (presently < 100 kW); klystrons: 300 MHz - 10 GHz (100's kW to multi-MW), Solid state: 0 - 2.5 GHz (presently up to ~200 kW, lower efficiency > 700 MHz), magnetrons: > 300 MHz (to be explored)
- AC DC: Power supplies 85 92% for all systems (solid state to klystrons).
- DC RF: Magnetrons claim up to 85% efficiency (to be proven in a complete system); gridded tubes: 70%, klystrons: 55%, solid state: 55%.
- Adding cooling systems, reduces total efficiency by a factor of ~0.73 compared to DC-RF.
- Modulator rise times have an impact on efficiency (e.g. HV klystron modulators).

- oil tanks.
- promising). To be continued.
- higher power transistors will be developed soon (not needed for broadcasting, telephone networks, ...). Future lies with combining cavities.
- (85%). More labs should join!

• R&D on klystron efficiency improvement is very active continues. Higher efficiency not only means electrical savings, but also simpler lower-voltage modulators and no need for

• MB-IOTs reach the MW class and may become an alternative to klystrons. (First tests are

 Solid state is developing and has the same efficiency at lower power (100 kW range) than what can be done with klystrons today at high power (MW range). Unlikely that

• Work on magnetrons just started; needs a lot of work, which is presently done only at 2 labs: FNAL and Lancaster University. High potential for lower prices and higher efficiency

