Nonlinear Optics in UMER

Brian Beaudoin

Heidi Baumgartner, Santiago Bernal, Levon Dovlatyan, Irving Haber, Rami Kishek, Timothy Koeth, David Matthew, Eric Montgomery, Kiersten Ruisard, David Sutter

June, $6^{\text {th }} 2017$
 IOTA/FAST Workshop

Outline

Three talks back-to-back

- Program Overview (Brian \& Tim)
- Precision/Performance Upgrade (Dave)
- Experimental and Simulation Results (Kiersten)

The University of Maryland Electron Ring

A Research Machine for Advanced Beam Dynamics

Original Mission: Space charge over long pathlengths

- Low energy (10keV) electrons
- Currents (0.01-100 mA)
- Emittances (0.3-3 mm) Safe
Flexible Printed Circuit Magnets:
- Independently-powered quadrupoles, octupoles, dipoles
- Variable space charge
- Tune-in halo

Well bench-marked simulations

Precision/Performance Upgrade - Phase 1

Rebuilding the ring from the ground up

- Reset the ring into a circle.
- Remount the ring to the floor using properly rated anchors and epoxy.
- Using Leica T3000 theodolites and laser range finders to align the ring.

Producing ultra-low current beams for pencil beam scanning - Phase 2

- The aperture would allow us to inject currents from $10 \mu \mathrm{~A}-1 \mathrm{~mA}$, in combination with old apertures and solenoid.
- The additional aperture would be fully retractable. To be installed soon

Actuating mirror cube

Constructing the Single Channel for UMER

 Half an Octupole

Printed Circuit Octupole Dave Matthew, Octupole Design Heidi Baumgartner, Octupole Characterization

Octupole insert

Designed by Kiersten Ruisard and Heidi Baumgartner

UMER:

Reconstruction and Realignment

February thru August 2016

David F. Sutter
IOTA Meeting
June 6, 2017

The U of Maryland Electron Ring

UMER Design Orbit:

Standard Ring Alignment Triangles
(36 Of these make up the ring)

June 6,2017

The design orbit is a 36 sided polygon with a circumference of 11520 mm .

These two specifications, and the locations of the quadrupoles on 16 cm centers, determine the Geometry of the EO, and therefore of the ring.

Component Mounting (20 ${ }^{\circ}$) plate

Standard UMER 20° Plate - with targets

RC7

RC7

Why a Rebuild \& Realignment?

UMER Mounting Assembly

~20 lb. Hoop force,
Toward ring center
due to vacuum

Old UMER Floor Plate

Fasteners - Before and After

The Essential Floor Template

New Floor Plate Ready for Stand

Ring Layout

Glass gaps are installed at RC-4, RC-10, RC-16 and the Y Section.

BPM-1 $\quad R_{\text {BPM }}=1828.81 \mathrm{~mm}$ One of the 2 basic design

RC3

$P D$ is the pulsed dipole used for injection. The center of PD and the ring center locate the Y axis and the $\boldsymbol{\theta}=0.000^{\circ}$ line for polar coordinates.
$R_{\text {rot }}=1648.87 \mathrm{~mm}$ used to set the yaw of the top plate.

UMER Design Tolerances

An ELEGANT simulation suggests that transverse rms position errors of 125 microns will give a 2 mm rms amplitude variation in the equilibrium orbit - this is acceptable for operation.

Type of Error	Simulation	Control
Quadrupoles	Tol.	Tol .
Translation (x)	0.100 mm	0.05 mm
Translation (y)	0.100 mm	0.05 mm
Translation (z)	1.0 mm	0.50 mm
Rotation (about z)	2.0 mrad	1.0 mrad
Rotation (about x)	-2.0 mrad	1.0 mrad
Rotation (about y)	-2.0 mrad	1.0 mrad
Strength	0.10%	0.05%
Dipoles		
Translation	1.0 mm	0.05 mm
Rotation (about z)	-2 mrad	1 mrad
Strength	0.40%	0.20%
BPM		
Aggregate Res.	---	0.25 mm
X, Y Position	---	0.1 mm
Rotation Angle	10 mrad	5 mrad

Tune scan, comparison: pre- and post- upgrade

Comparison of current in 6 mA beam on $20^{\text {th }}$ turn across a range of operating points normalized to maximum current in first turn.

Update on Simulations and Experiments at UMER

Kiersten Ruisard
Heidi Baumgartner, David Matthew, Irving Haber, Santiago Bernal, Brian
Beaudoin, Timothy Koeth

June 6, 2017
IOTA/FAST Collaboration Meeting

Nonlinear (octupole) lattice at UMER

Octupoles scale with $\beta(s)^{-3} \rightarrow$ quasi-integrable Hamiltonian conserved

Octupole strength
T-insert
Diagram of the lattice structure for Nonlinear UMER

Position along 20° plate [mm]

Lattice Design

Half of ring, in non-FODO lattice:

Twiss parameters--input: fulling.ele lattice: umer.lte
$\Delta \Psi_{\text {channel }}=0.23 * 2 \pi$

- $\beta_{x}=\beta_{y}$ in nonlinear insert
- Equivalent to thin lens kick
- Phase advance π
- Achromatic

Printed Circuit Octupole Magnets

Heidi Baumgartner, Dave Matthew

Measured: $51.6 \pm 1.5 \mathrm{~T} / \mathrm{m}^{3} / \mathrm{A}$
Predicted: 74 T/m³/A
Higher order multipoles suppressed by 10^{-2}

Quadrupole/sextupole components unexpected

Experimental Plans

UMER Beams

- Tune/ lattice function measurement
- Tune scan around integrable condition
- Halo damping

Starting with low current ($\sim 60 \mu \mathrm{~A}$)
Need large number of turns

Current $[\mathrm{mA}]$	Initial rms $\boldsymbol{\varepsilon}$ $[\boldsymbol{\mu m}]$	Avg. Radius $[\mathrm{mm}]$	${\mathbf{v} / \mathbf{v}_{\mathbf{o}}}^{$ Coherent tune shift $}$	Incoherent tune shift	
0.6	0.4	1.6	0.85	-0.005	0.94
6.0	1.3	3.4	0.62	-0.05	2.4
21	1.5	5.2	0.31	-0.17	4.5

Dialed-in Halo
How many turns can we expect?
Is dominant loss mechanism due to transverse or longitudinal losses?
What is our sensitivity to transverse resonances? Can we verify quasi-integrable condition is met? (Including accurate tune prediction and

Beam Current	Approx. \# Turns to Debunch	Approx. \# Turns with Long. Focusing
$60 \mu \mathrm{~A}$	72	
$600 \mu \mathrm{~A}$	25	1,000
6.0 mA	9	100
21 mA	6	
104 mA	3	

0.6 mA (Pencil Beam)

Current	Initial rms $\boldsymbol{\varepsilon}$	Avg. Radius	${\mathbf{v} / \mathbf{v}_{\mathbf{o}}}^{\text {Coherent }}$	Incoherent tune shift tune shift	
0.6 mA	$0.4 \mu \mathrm{~m}$	1.6 mm	0.85	-0.005	0.94

Low-current "DC-beam"

METHOD	BEAM CURRENT, PULSE LENGTH	MEASUREMENT
DC Electron Gun	$10-100 \mathrm{~mA}$, 100 ns	40 mA, $\varepsilon_{x, y} \cong 300,100 \mu \mathrm{~m}$

Current	Initial rms $\boldsymbol{\varepsilon}$	Avg. Radius	$\mathbf{v}^{\prime} / \mathbf{v}_{\mathbf{o}}$
$60 \mu \mathrm{~A}$	$300 \mu \mathrm{~m}, 100 \mu \mathrm{~m}$	$?$	$?$

$60 \mu \mathrm{~A}$ "DC-beam"

Current	Initial rms $\boldsymbol{\varepsilon}$	Avg. Radius	v/v $_{\mathbf{o}}$
$60 \mu \mathrm{~A}$	$300 \mu \mathrm{~m}, 100 \mu \mathrm{~m}$	$?$	$?$

single octupole powered at 3 A, 155 T/m³

Longitudinal Confinement

Pencil beam with confinement

Use RF induction cell to extend beam lifetime.
Pencil beam scan with 30% loss after 720 turns

Loss curve measurement without confinement, 1000 turns

Measuring bare tune

RC6 horizontal centroid oscillation

Last year's to-do list

Recommissioning of the beam
Simulation program to catch up to experimental

Experimental run with re-aligned beam
Working out kinks with magnet models.
Experimental study for beam-based survey of magnets (Levon Dovlatyan)

- Quantify conservation of Hamiltonian/ tune spread

Characterization of octupoles See NAPAC'16 proceedings, Heidi Baumgartner
Mechanical framework for single-channel in-progress experiment on 20-degree section
Distributed octupole lattice tests at On hold for now, in favor of experimental improved operating point
studies to support planned octupole lattice
experiments

Ongoing work

Simulation effort

- Correction for edge-focusing effect on matching (aided by beam-based survey of dipoles)
- Lattice design with less sensitivity to errors

Experimental Effort

- Characterizing resonances/loss rates of low-current DC beam beyond 125 turns
- Longitudinal confinement for assisting many-turn studies - addressing noise and shock-wave effect on measurement of transverse losses.
- Verifying models against tune measurement
- Beam injection to non-FODO lattice

Ring improvements

- Full implementation of vertical steering upgrade
- Long octupole channel in-progress
- Installation and characterization of new apertures

Steering Tolerances

Modeling of orbit distortion

Modeling of beam immersed in background field

Steering tolerances

$1^{\text {st }}$ turn orbit control; deviation from quadrupole center				
	2017		2016	2013
X RMS [mm]	0.4	1.2	3.4	
X Maximum [mm]	1	4.1	>20	
Y RMS [mm]	$3.2(0.6)$	3.2	7.4	
Y Maximum [mm]	$10.8(3.6)$	10.8	>20	
Multi-turn control < 1.2 mm				

BPM location

Back Up Slides

Installing a Base Plate

June 6,2017

Mechanical Layout

Refastening Template

June 6,2017

Mechanical Alignment (cont.)

