

Nonlinear Optics in UMER

Brian Beaudoin

Heidi Baumgartner, Santiago Bernal, Levon Dovlatyan, Irving Haber, Rami Kishek, Timothy Koeth, David Matthew, Eric Montgomery, Kiersten Ruisard, David Sutter

> June, 6th 2017 IOTA/FAST Workshop

Institute for Research in Electronics & Applied Physics

Outline

Three talks back-to-back

- Program Overview (Brian & Tim)
- Precision/Performance Upgrade (Dave)
- Experimental and Simulation Results (Kiersten)

The University of Maryland Electron Ring A Research Machine for Advanced Beam Dynamics

Original Mission: Space charge over long pathlengths

- Low energy (10keV) electrons
- Currents (0.01-100 mA)
- Emittances (0.3-3 mm)

Safe

Flexible Printed Circuit Magnets:

- Independently-powered quadrupoles, octupoles, dipoles
- Variable space charge
- Tune-in halo

Well bench-marked simulations

Lap time = Pulse Length = Full-Lattice Period = Vacuum Pipe radius =

197 ns, (5.08 MHz) 15 to 145 ns,

0.32 m (std. lattice) 25.4 mm

Precision/Performance Upgrade - Phase 1

Rebuilding the ring from the ground up

- Reset the ring into a circle.
- Remount the ring to the floor using properly rated anchors and epoxy.
- Using Leica T3000 theodolites and laser range finders to align the ring.

Producing ultra-low current beams for pencil beam scanning - Phase 2

- The aperture would allow us to inject currents from 10 µA - 1 mA, in combination with old apertures and solenoid.
- The additional aperture would be fully retractable. To be installed soon

Actuating mirror cube

Constructing the Single Channel for UMER

Half an Octupole

Printed Circuit Octupole Dave Matthew, Octupole Design Heidi Baumgartner, Octupole Characterization

Reconstruction and Realignment

February thru August 2016

David F. Sutter IOTA Meeting June 6, 2017

The U of Maryland Electron Ring

Standard Ring Alignment Triangles (36 Of these make up the ring)

Flange

The design orbit is a 36 sided polygon with a circumference of 11520 mm.

These two specifications, and the locations of the quadrupoles on 16 cm centers, determine the Geometry of the EO, and therefore of the ring.

Standard UMER 20° Plate - with targets

Why a Rebuild & Realignment?

Fasteners – Before and After

The Essential Floor Template

New Floor Plate Ready for Stand

UMER Design Tolerances

An ELEGANT simulation suggests that transverse rms position errors of 125 microns will give a 2 mm rms amplitude variation in the equilibrium orbit – this is acceptable for operation.

Type of Error	Simulation	Control	
Quadrupoles	Tol.	Tol.	
Translation (x)	<mark>0.100 mm</mark>	0.05 mm	
Translation (y)	0.100mmm	0.05 mm	
Translation (z)	1.0 mm	0.50 mm	
Rotation (about z)	2.0 mrad	1.0 mrad	
Rotation (about x)	~ 2.0 mrad	1.0 mrad	
Rotation (about y)	~ 2.0 mrad	1.0 mrad	
Strength	0.10 %	0.05 %	
Dipoles			
Translation	1.0 mm	0.05 mm	
Rotation (about z)	~ 2 mrad	1 mrad	
Strength	0.40 %	0.20 %	
BPM			
Aggregate Res.		0.25 mm	
X, Y Position		0.1 mm	
Rotation Angle	10 mrad	5 mrad	

Tune scan, comparison: pre- and post- upgrade

Comparison of current in 6 mA beam on 20th turn across a range of operating points normalized to maximum current in first turn.

Update on Simulations and Experiments at UMER

Kiersten Ruisard

Heidi Baumgartner, David Matthew, Irving Haber, Santiago Bernal, Brian Beaudoin, Timothy Koeth

June 6, 2017 IOTA/FAST Collaboration Meeting

Position along 20° plate [mm]

Wall Current

Monitor

Lattice Design

$$\Delta \Psi_{channel} = 0.23 * 2\pi$$

 $\Delta \Psi_{oct} = 0.28 * 2\pi$

- $\beta_x = \beta_y$ in nonlinear insert
- Equivalent to thin lens kick
- Phase advance π
- Achromatic

Printed Circuit Octupole Magnets

Heidi Baumgartner, Dave Matthew

Measured: $51.6 \pm 1.5 \text{ T/m}^{3}/\text{A}$

Predicted: 74 T/m³/A

Higher order multipoles suppressed by 10⁻²

Quadrupole/sextupole components unexpected

Absolute spectrum of B_a as measured by Gauss probe

Experimental Plans

UMER Beams

- Tune/ lattice function measurement
- Tune scan around integrable condition
- Halo damping

Starting with low current (~60 μA) Need large number of turns

Dialed-in Halo

How many turns can we expect?

Is dominant loss mechanism due to transverse or longitudinal losses?

What is our sensitivity to transverse resonances? Can we verify quasi-integrable condition is met? (Including accurate tune prediction and measurement)

Current [mA]	Initial rms ε [μm]	Avg. Radius [mm]	v/v _o	Coherent tune shift	Incoherent tune shift
0.6	0.4	1.6	0.85	-0.005	0.94
6.0	1.3	3.4	0.62	-0.05	2.4
21	1.5	5.2	0.31	-0.17	4.5

Beam Current	Approx. # Turns to Debunch	Approx. # Turns with Long. Focusing
60 µA	72	
600 µA	25	1,000
6.0 mA	9	100
21 mA	6	
104 mA	3	

0.6 mA (Pencil Beam)

Current	Initial rms ε	Avg. Radius	v/v _o	Coherent tune shift	Incoherent tune shift
0.6 mA	0.4 µm	1.6 mm	0.85	-0.005	0.94

Low-current "DC-beam"

60 µA "DC-beam"

Current	Initial rms ε	Avg. Radius	v/v _o
60 µA	300 µm,100 µm	?	?

60 μA "DC-beam"

Longitudinal Confinement

Pencil beam with confinement

Use RF induction cell to extend beam lifetime.

Pencil beam scan with 30% loss after 720 turns

Measuring bare tune

50

Last year's to-do list

Recommissioning of the beam

Simulation program to catch up to experimental

Experimental run with re-aligned beam

Working out kinks with magnet models. Experimental study for beam-based survey of magnets (Levon Dovlatyan)

 Quantify conservation of Hamiltonian/ tune spread

Characterization of octupoles See NAPAC '16 proceedings, Heidi Baumgartner

Mechanical framework for single-channel In-progress experiment on 20-degree section

Distributed octupole lattice tests at improved operating point On hold for now, in favor of experimental studies to support planned octupole lattice experiments

Ongoing work

Simulation effort

- Correction for edge-focusing effect on matching (aided by beam-based survey of dipoles)
- Lattice design with less sensitivity to errors

Experimental Effort

- Characterizing resonances/loss rates of low-current DC beam beyond 125 turns
- Longitudinal confinement for assisting many-turn studies addressing noise and shock-wave effect on measurement of transverse losses.
- Verifying models against tune measurement
- Beam injection to non-FODO lattice

Ring improvements

- Full implementation of vertical steering upgrade
- Long octupole channel in-progress
- Installation and characterization of new apertures

Steering Tolerances

"Toy model" WARP simulations with steering error; Left: dependence on orbit distortion Right: immersed in background field

Modeling of orbit distortion

Modeling of beam immersed in background field

Steering tolerances

1 st turn orbit control; deviation from quadrupole center					
	2017	2016	2013		
X RMS [mm]	0.4	1.2	3.4		
X Maximum [mm]	1	4.1	> 20		
Y RMS [mm]	3.2 <mark>(0.6)</mark>	3.2	7.4		
Y Maximum [mm]	10.8 <mark>(3.6)</mark>	10.8	> 20		
Multi-turn control < 1.2 mm					

BPM Data

Back Up Slides

Installing a Base Plate

Mechanical Layout

Refastening Template

Mechanical Alignment (cont.)

