OSC Progress

Valeri Lebedev
Contribution came from A. Romanov, M. Andorf, J. Ruan FNAL

IOTA/FAST Science Program meeting Fermilab
June 6, 2017

Test of OSC in Fermilab

- IOTA - a dual purpose small electron ring
- Integrable optics
- OSC
- ~6 m straight is devoted to OSC

OSC in IOTA

- Chicane for beam separation
- Optical amplifier \& light focusing

- Collider type optics is required to maximize cooling range for x-plane
- Rectangular dipoles
- Center quad (QD) introduces non-zero M_{51} \& $M_{52}=>\perp$ cooling

Optics functions for half OSC straight (starting from center)

OSC in IOTA

- Stable configuration
- No changes for more than year
- Major parameters
- $100 \mathrm{MeV}(\gamma \approx 200)$ electrons
- Basic wave length - $2.2 \mu \mathrm{~m}$
- 7 period undulators
- Two modes of operation
- Passive - Optical telescope with suppression of depth of field
- Active - $\sim 10 \mathrm{~dB}$ optical amplifier
- We plan OSC demonstration
- with large number of particles
- and single electron
- quantum mechanics and electrodynamics
\Rightarrow Wave-function localization
\Rightarrow Two photon radiation
\Rightarrow...

Basics of OSC: Damping Rates

- Linearized longitudinal kick in pickup wiggler

$$
\begin{aligned}
\frac{\delta p}{p}= & k \xi_{0} \Delta s=k \xi_{0}\left(M_{51} x_{1}+M_{52} \theta_{x_{1}}+M_{56} \frac{\Delta p}{p}\right) \\
& \xrightarrow[\text { in the absence of }]{\text { betron motion }}
\end{aligned} k_{0}\left(M_{51} D_{x}+M_{52} D_{x}^{\prime}+M_{56}\right) \frac{\Delta p}{p} .
$$

- Partial slip factor (pickup-to-kicker) describes a longitudinal particle displacement in the course of synchrotron motion

$$
\tilde{M}_{56}=M_{51} D_{1}+M_{52} D_{1}^{\prime}+M_{56}
$$

- Cooling rates (per turn)

$$
\begin{aligned}
& \lambda_{x}=\frac{k \xi_{0}}{2}\left(M_{56}-\tilde{M}_{56}\right) \\
& \lambda_{s}=\frac{k \xi_{0}}{2} \tilde{M}_{56}
\end{aligned}
$$

$$
\lambda_{x}+\lambda_{s}=\frac{k \xi_{0}}{2} M_{56}
$$

Basics of OSC: Cooling Range

- Cooling force depends on Δs nonlinearly

$$
\frac{\delta p}{p}=k \xi_{0} \Delta s \Rightarrow \frac{\delta p}{p}=\xi_{0} \sin (k \delta s)
$$

where $k \delta s=a_{x} \sin \left(\psi_{x}\right)+a_{p} \sin \left(\psi_{p}\right)$ and $a_{x} \& a_{p}$ are the amplitudes of longitudinal displacements in cooling chicane due to \perp and L motions measured in units of laser phase

- Averaging yields the form-factors

- for damping rates

$$
\begin{aligned}
& \lambda_{s, x}\left(a_{x}, a_{p}\right)=F_{s, x}\left(a_{x}, a_{p}\right) \lambda_{s, x} \\
& F_{x}\left(a_{x}, a_{p}\right)=\frac{2}{a_{x}} \mathrm{~J}_{0}\left(a_{p}\right) \mathrm{J}_{1}\left(a_{x}\right) \\
& F_{p}\left(a_{x}, a_{p}\right)=\frac{2}{a_{p}} \mathrm{~J}_{0}\left(a_{x}\right) \mathrm{J}_{1}\left(a_{p}\right)
\end{aligned}
$$

- Damping requires both lengthening amplitudes (a_{x} and a_{p}) to be smaller than $\mu_{0} \approx 2.405$

Basics of OSC: Non-linearity of Longitudinal Motion

- Major non-linear contribution comes from particle angles

$$
\Delta s=M_{51} x_{1}+M_{52} \theta_{x_{1}}+M_{56} \frac{\Delta p}{p}+\frac{1}{2} \int_{s_{1}}^{s}\left(\theta_{x}^{2}+\theta_{y}^{2}\right) d s+\ldots
$$

- It is large and has to be compensated
- X-plane makes much larger contribution due to small $\beta_{x}{ }^{*}$
- Correction of path length non-
 linearity is achieved by two pairs of sextupoles located between dipoles of each dipole pair of the chicane
- Very strong sextupoles: $\mathrm{SdL}_{y}=-7.5 \mathrm{kG} / \mathrm{cm}_{1} \mathrm{SdL}_{x}=1.37 \mathrm{kG} / \mathrm{cm}$. It results in a considerable limitation on the dynamic aperture.

Compensation of Non Linear Sample Lengthening

IOTA Optics

Main Parameters of IOTA storage ring for OSC

Circumference	40 m
Nominal beam energy	100 MeV
Bending field	4.8 kG
SR rms \times emittance, $\varepsilon_{x S R}\left(\varepsilon_{y}=0\right)$	2.6 nm
Rms momentum spread, σ_{p}	$1.06 \cdot 10^{-4}$
SR damping times (ampl.), $\tau_{x} / \tau_{y} / \tau_{s}$	$1.7 / 2 / 1.1 \mathrm{~s}$

Main parameters of cooling chicane

Delay in the chicane, Δs	2 mm
Horizontal beam offset, h	35.1 mm
M_{56}	3.91 mm
D^{*} / β^{*}	$48 \mathrm{~cm} / 12 \mathrm{~cm}$
Cooling rates ratio, $\left(\lambda_{x}=\lambda_{y}\right) / \lambda_{s}$	0.58
Cooling ranges (before $O S C), n_{\sigma x}=n_{\sigma y} / n_{\sigma s}$	$14 / 4.4$
Dipole: magnetic field *length	$2.5 \mathrm{kG} * 8 \mathrm{~cm}$
Strength of central quad, $G d L$	0.45 kG

- Energy is reduced $150 \rightarrow 100 \mathrm{MeV}$ to reduce ε, σ_{p} and length of undulator period
- Operation on coupling resonance $Q_{x} / Q_{y}=5.42 / 3.42$ reduces horizontal emittance and introduces vertical damping
- Small β^{*} is required to minimize sample lengthening due betatron motion

IOTA Optics (2)

A. Romanov

Challenges of the OSC Chicane Design

Structure of the half of the OSC region (from OSC center to the end of undulator)

- Very tight space allocations for all elements
- Because of small allocated space and small wave length of radiation
- Very strong sextupoles
- Larger distance between sextupoles increases DA => shorter sextupoles
- E.-M. radiation (2.2-3.1 $\mu \mathrm{m}, \lambda_{\max } / \lambda_{\min } \sim 1.4$) should come through magnets

OSC Chicane Dipoles (A. Romanov)

- Relatively small B (2.5 kG) => coils can be partially hidden in the core
- Magnetic shields at the ends to reduce interference with nearby elements
- 3D optimization of magnet geometry nearly complete
- Light passage
- Inner dipoles - outside poles
- Outer dipoles inside poles

Major parameters

Gap	16 mm
Max. beam size diameter (10 $\sigma)$	12 mm
Magnetic field	2.5 kG
Magnetic length	8 cm

OSC Chicane Sextupoles

- Light divergence: $\theta_{\max }=4 \mathrm{mrad}\left(\theta_{\max } \gamma=0.8\right)$
- Aperture larger than $\mathrm{R}=2.5 \mathrm{~cm}$ is required if sextupoles are identical
- Making sextupoles different greatly reduces aperture requirements

Major parameters of sextupoles

	Inner	Outer
Length, cm	$10 ?$	10
Inscribed radius, cm	0.65	2.1
Gradient, kG/cm		
Field at pole tip, kG	-0.75	1.37

- 3D design is nearly complete
- Making vacuum chamber integrated with sextupoles would enable further reduction of the sextupole apertures

Light passage through both sextupoles

Light passage through outer sextupole

Light passage through inner sextupole

OSC Chicane Sextupoles (2)

(A. Romanov)

Inner sextupole ($\mathrm{B}_{\text {iron }}<2 \mathrm{kG}$)

Inner diameter	0.65 cm
Maximum gradient $\left(\mathrm{d}^{2} \mathrm{~B} / \mathrm{dr}^{2}\right)$	$1.1 \mathrm{kG} / \mathrm{cm}^{2}$
Coil current	40 A
Current density	$1 \mathrm{~A} / \mathrm{mm}^{2}$

Outer sextupole ($\mathrm{B}_{\text {iron }}<15 \mathrm{kG}$)

Inner diameter	2.1 cm
Maximum gradient $\left(\mathrm{d}^{2} \mathrm{~B} / \mathrm{dr}^{2}\right)$	$1.8 \mathrm{kG} / \mathrm{cm}^{2}$
Coil current	2200 A
Current density	$2 \mathrm{~A} / \mathrm{mm}^{2}$

- We need to discuss a possibility of shortening the inner sextupoles

OSC Quads and Undulators

- The design of OSC quads and undulators does not represent a significant challenge
- Center quad
$L=6 \mathrm{~cm}, G=0.2 \mathrm{kG} / \mathrm{cm}, 2 a=16 \mathrm{~mm}, B_{\text {tip }}=0.16 \mathrm{kG}, I_{\text {pole }}=55 \mathrm{~A}$
- Four outer quads
$L=10 \mathrm{~cm}, G=1 \mathrm{kG} / \mathrm{cm}, 2 a=25 \mathrm{~mm}, B_{\text {tip }}=1.25 \mathrm{kG}, I_{\text {pole }}=800 \mathrm{~A}$
- Undulator
$L=77.5 \mathrm{~cm}, 7$ poles, period $=11.1 \mathrm{~cm}$, gap $=25 \mathrm{~mm}$,
$\mathrm{B}_{\text {max }}=1.5 \mathrm{kG}$, $\mathrm{I}_{\text {pole }}=1.5 \mathrm{kA}$
- The design initiation
- For quads it will be determined by availability of resources
- For undulators we expect ANL help/expertise

Focusing of Beam Radiation in the Passive Scheme

- Three lens system with complete suppression of depth of field

$$
\left(\begin{array}{cc}
1 & L_{1} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{F_{1}} & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & L_{2} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{F_{2}} & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & L_{2} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{F_{1}} & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & L_{1} \\
0 & 1
\end{array}\right)=p \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Outer lenses are located just outside of inner dipole
- 29 mm beam-to-beam distance

$$
\begin{array}{ll}
\mathrm{L}_{4}:=\mathrm{L}_{\text {tot }}-\mathrm{L}_{2}=143 \mathrm{~cm} & \mathrm{~F}_{2}:=\mathrm{L}_{2}=32 \mathrm{~cm} \\
\mathrm{~L}_{\text {tot }}=175 \mathrm{~cm} & \mathrm{~F}_{2}=-4.613 \mathrm{~cm}
\end{array}
$$

(out of 35.1 mm in the center quad)

Optical Telescope

- An accuracy and stability of \perp \& \| alignment is determined by the diffraction size of e.-m. radiation in the pickup: $\rho_{\max }=\lambda_{L \gamma} \approx 430 \mu \mathrm{~m}$
- Lenses are mounted on the optical girder and their \perp and || locations are adjusted and finally set in the lab
- The optical girder, as a whole, is aligned relative to the IOTA ring
- Requirements to the initial lens positioning inside telescope
- Transverse $<70 \mu \mathrm{~m}$
\Rightarrow Corresponds to the focal point displacement of 0.5 mm (amplification ~7)
- Longitudinal < 0.5 mm
\Rightarrow Corresponds to the spot size increase of $\sim 40 \mu \mathrm{~m}\left(\sim \rho_{\max } / 10\right)$
- Requirements to the long-term lens stability inside telescope
- Transverse < $6 \mu \mathrm{~m}\left(\sim \rho_{\max } / 10\right)$
- Longitudinal < 0.2 mm (not a problem)

Optical Telescope (2)

- The optical girder is mounted inside vacuum chamber and is supported at two points (near ends) to prevent its bending by forces induced by atmospheric pressure
- The girder can be Ti or Al pipe (large ratio E/ $) \quad \Delta x=\frac{2 \cdot \mathrm{p} \cdot \mathrm{g}}{\mathrm{E} \cdot \mathrm{R}^{2}} \cdot \frac{5 \cdot \mathrm{~L}_{2}{ }^{4}}{24}$
- radius $\geq 25 \mathrm{~mm}$ is required (sagitta <2.6 $\mu \mathrm{m}$)

$$
\Delta x=\frac{2 \cdot \rho \cdot \mathrm{~g}}{\mathrm{E} \cdot \mathrm{R}^{2}} \cdot \frac{5 \cdot \mathrm{~L}_{2}{ }^{4}}{24}
$$

Two tilted plates with variable and equal angles regulate delay of the E.-M. radiation pulse (up to $\pm 20 \mu \mathrm{~m}$)

- Tilt angle near Brewster angle minimizes reflections
- Material and a necessity of antireflection coating require additional insight

Optical Lenses

- Lenses are manufactured from barium fluoride (BaF_{2})
- Material with very small $2^{\text {nd }}$ order dispersion
- Antireflection coating should also protect from humidity damage
- Total thickness of the lenses (at axis) is determined by required delay of 2 mm
$\Rightarrow h_{\text {total }}=4.245 \mathrm{~mm}$ (Out of this value 1 mm is reserved for delay adjustment)

	inner	outer
Focal distance, mm	-46.13	320
Thickness at center, mm	0.76	1.24
Radius of lens, mm	5	10

- The radiation wave length depends on angle \Rightarrow Lens shape correction for the outer lenses
- $\sim 11 \mu \mathrm{~m}$ correction at $r=10 \mathrm{~mm}$
- ~2.5 $\mu \mathrm{m}$ correction at the light beam radius (7.3 mm)
- Errors of focal lens $<3 \%$ can be compensated by lens displacement at the initial tuning in the lab

First Order Dispersion Effects in Optical Lenses

- The first order dispersion, $\mathrm{d} n / \mathrm{d} \lambda$, results in 1.5% difference between phase and group velocities in the lens material
- It is accounted in the total lens thickness
- Significant separation of radiation of the first and higher harmonics
- Higher harmonics do not interact resonantly in kicker and have little effect on cooling (make negligible diffusion)

Overlap of radiation for the second and third harmonics of undulator radiation

- Dependence of focusing strength on the wave length (1-st order chromaticity) results in a few percent reduction of cooling rates (if uncompensated

Second Order Dispersion Effects in Optical Lenses

The second order dispersion, $d^{2} n / d \lambda^{2}$, results in lengthening of the light packet and, consequently, 6% loss of cooling rates

Single Pass Optical Amplifier for OSC at IOTA

- Demonstration of OSC with optical amplifier is important part of the experimental program
- Should follow the passive OSC
- Major problem is obtaining large gain with quite short optical delay (2 mm)

Basic Characteristics

- Cr:ZnSe solid state lasing gain medium.
- Bandwidth FWHM 2.2-2.9 $\mu \mathrm{m}$.
- 1 mm thickness ($\sim 1.44 \mathrm{~mm}$ delay)
- CW pumping at $1.908 \mu \mathrm{~m}$ with $\sim 100 \mathrm{~kW} / \mathrm{cm}^{2}$

Matt Andorf and Philippe Piot

- High power (105 W) commercially available Thulium pump
- Gain
- Combination of short crystal length, small signal intensity and depleted ground state gives rise to exponential signal growth through the crystal.
- Total gain in power, G=5

Single Pass Optical Amplifier for OSC at IOTA (2)

- Radiation is modified in 3 ways while passing through the amplifier
- Group Velocity Dispersion from the host medium lengthens the pulse
- Gain narrowing (pulse broadening) from finite amplifier bandwidth
- Phase distortions from amplification.
- Lengthening through GVD has largest effect
- Amplifier is expected to increases cooling rates by about factor of 2

Requirements to Beam Position \& Optics Stability Beam Optics Sensitivity to Errors in Magnets

- Sextupoles are located at larger beta-function than the betafunction in the OSC chicane center and have larger effect on optics
- Feeddown of quad focusing from sextupoles has to be below GdL~30 G
\Rightarrow Required beam position stability in sextupoles is <20 $\mu \mathrm{m}$
■ Optics measurements will correct for this feeddown focusing
- Magnetic field of OSC chicane dipoles has to be within $2 \cdot 10^{-4}$ in the good field region of $2 a=8 \mathrm{~mm}$

Effect of focusing due to feeddown in sextupoles on the ratio of cooling rates

Effect of focusing due to feeddown in sextupoles on the cooling range

Other Comments

- Good knowledge of beam optics is required
\Rightarrow Accurate optics measurements
- Beta-function control $<10 \%$
- Dispersion control $<10 \mathrm{~cm}$ ($<7 \%$ from maximum D)
- Beam intensities in the OSC experiments are quite low and therefore the beam based beam position stabilization is unfeasible
\Rightarrow Mechanical stability of the ring and an accuracy of power supplies have to
be sufficiently good to keep uncontrolled beam motion within $\pm 10 \mu \mathrm{~m}$
- There is no readily available photo-detectors capable to register single photon in the range of [2.2-3] $\mu \mathrm{m}$
- Some beam tuning and studies can be done at $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonics which radiation is much easier to observe
- Note that the dispersion in the lens material separates in time the radiations from pickup and kicker undulators
- No interference at $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonics
- Geometrical parameters for the beam and light optics are expected to be adjusted with advance of mechanical design
- It will not have significant effect on parameters of OSC cooling

Conclusions

- We are at transition from a conceptual design of the experiment to a conceptual design of sub-systems
- Conceptual design of chicane magnets (D, Q, S) A. Romanov
- Conceptual design of Optical Amplifier, M. Andorf
- Some advances in optical instrumentation, J. Ruan
- We are ready to initiate mechanical design of the OSC region
- The pace of progress will depend on available resources
- A formal document - Conceptual Design Report - still needs to be written
- Insufficient resources and priority
\Rightarrow Very little progress in the last year
- We began discussion of OSC instrumentation and tuning procedures
- No show stoppers so far
- Time of beam arrival to IOTA is approaching fast
- It is time put more resources onto the OSC

Backup slides

Beam Parameters and Beam Lifetime

RF voltage, VRF	30 V
Harmonic number	4
RF frequency	30 MHz
SR loses per turn	13.2 eV
Momentum compaction	-0.0165
Bucket height, $\Delta \mathrm{p} /\left.\mathrm{p}\right\|_{\max }$	$1.08 \cdot 10^{-3}(10 \sigma)$
Synchrotron tune	$4.8 \cdot 10^{-5}(360 \mathrm{~Hz})$
Bunch length set by SR	21 cm
Particles per bunch, N_{e}	$1-10^{7}$
Geom. acceptance with OSC insert	$1 \mu \mathrm{~m}$
Dynamic acceptance	$0.25 \mu \mathrm{~m}\left(10 \sigma\right.$ for $\left.\varepsilon_{x S R}\right)$
Touschek lifetime @ $\mathrm{N}_{e}=2 \cdot 10^{5}$	1.46 hour
Effective vacuum (H_{2})	2.10-10 Torr
Vacuum lifetime	1.9 hour
$\left(\mathrm{d} \varepsilon_{x, y} / \mathrm{d} \dagger\right)_{\text {gas }} /\left(\mathrm{d} \varepsilon_{x} / \mathrm{d} \dagger\right)_{\text {SR }}$	0.027/0.034
$\left.\left(\mathrm{d} \varepsilon_{x} / \mathrm{d} t\right)_{\text {IBS }} / \mathrm{d} \varepsilon_{x} / \mathrm{d} t\right)_{\text {SR }} @ \mathrm{~N}_{e}=2 \cdot 10^{5}$	0.39
$\left(\mathrm{d} \sigma_{\mathrm{p}}{ }^{2} / \mathrm{dt}\right)_{\text {IBS }} /\left(\mathrm{d} \sigma_{\mathrm{p}}{ }^{2} / \mathrm{dt}\right)_{\text {SR }} @ \mathrm{~N}_{e}=2 \cdot 10^{5}$	0.46

OSC Limitations on IOTA Optics

- In the first approximation the orbit offset in the chicane (h), the path lengthening (δs) and the
 defocusing strength of chicane quad (Φ) together with dispersion

$$
M_{56} \approx 2 \Delta s
$$ and beta-function in the chicane

$$
\begin{aligned}
& \tilde{M}_{56} \approx 2 \Delta s-\Phi D^{*} h, \\
& \lambda_{x} / \lambda_{s} \approx \Phi D^{*} h /\left(2 \Delta s-\Phi D^{*} h\right), \\
& n_{\sigma p} \approx \mu_{0} /\left(\left(2 \Delta s-\Phi D^{*} h\right) k \sigma_{p}\right), \\
& n_{\sigma x} \approx \mu_{0} /\left(2 k h \Phi \sqrt{\varepsilon \beta^{*}}\right),
\end{aligned}
$$ center (D^{*}, β^{*}) and determine the $\lambda_{x} / \lambda_{s} \approx \Phi D^{*} h /\left(2 \Delta s-\Phi D^{*} h\right)$, entire cooling dynamics

- $\delta \boldsymbol{s}$ is set by delay in the amplifier

$$
\Rightarrow M_{56}
$$

- $\Phi D^{*} h$ is determined by the ratio of decrements => for known ε we obtain the dispersion invariant $\left(A^{*}\right)$

$$
\Rightarrow \Phi D^{*} h \approx \frac{\mu_{0}}{2 k n_{\sigma x}} \sqrt{\frac{A^{*}}{\varepsilon}}, A^{*} \equiv \frac{D^{* 2}}{\beta^{*}}
$$

- An average value of A in dipoles determines the equilibrium emittance. A^{*} is large and A needs to be reduced fast to get an acceptable value of the emittance (ε)

Parameters of Chicane Optics

Dependence of Cooling Efficiency on Undulator Parameter

- With increase of Ku a particle motion in undulator becomes comparable to the size of the focused radiation
- It reduces cooling efficiency
- An increase of $K \cup$ also increases undulator magnetic field and, consequently, the equilibrium emittance and undulator focusing
- Chosen undulator parameter $\mathrm{K}=1.038$ corresponds to the 7 period undulator with $\mathrm{B}_{0}=1 \mathrm{kG}$. It results in a moderate increase of equilibrium emittance of $\sim 5 \%$.

Cooling Rates

- Undulator period was chosen so that $\left.\lambda\right|_{\theta=0}=2.2 \mu \mathrm{~m}$
- Cooling rates were computed using earlier developped formulas(HB2012)
- Optical system bandwidth of $\sim 40 \%$ is limited by telescope acceptance $\lambda=[2.2-3.1] \mu \mathrm{m}$

Main parameters of OSC

Undulator parameter, K	1.038
Undulator period	11.063 cm
Radiation wavelength at zero angle	$2.2 \mu \mathrm{~m}$
Number of periods, m	7
Total undulator length, L_{w}	0.774 m
Length from OA to undulator center	1.75 m
Telescope aperture, $2 a$	14 mm
OSC damp. rates $(x=y / s)$	$5.8 / 10 \mathrm{~s}^{-1}$

- Effective bandwidth of SC system is determined by number of undulator periods and dispersion in the lens: $1 / n_{\text {per }}$
- Higher harmonics of SR radiation, if present, introduce small additional diffusion ($1 / n_{\text {poles }}$) and reduce effective bandwidth
- 4 mrad angular acceptance of optical system (aperture $a=7 \mathrm{~mm}$)
- Undulator parameter $K \approx 1$ is close to the optimal for chosen bandwidth and aperture $\left(\theta_{\max } \gamma=0.8\right)$

Effect of Beams Overlap on Cooling Rates

- There are 2 possible solutions for three lens telescope (1) With positive identity matrix
(2) With negative identity matrix
- The second choice is preferred for two reasons
- Smaller focusing chromaticity
- Transfer matrices for particles are close to the negative identity matrix. It mostly compensates separation of light and particles due to betatron motion

- Particle motion in undulators have to be also accounted

Kicker

Sensitivity of OSC parameters to Optics Variations

- Sensitivity of cooling range to optics variations does not represent significant problems
- It requires
- beta-function control <10\%

Dependence of cooling range and ratio of cooling rated on the beta-function and dispersion at the beginning of OSC

Basics of OSC - Correction of the Depth of Field

- It was implied above that the radiation coming out of the pickup undulator is focused
 on the particle during its trip through the kicker undulator
- It can be achieved with lens located at infinity

$$
\frac{1}{2 F+\Delta s}+\frac{1}{2 F-\Delta s}=\frac{1}{F} \rightarrow \frac{1}{F-\Delta s^{2} / 4 F}=\frac{1}{F} \xrightarrow{F \rightarrow \infty} \frac{1}{F}=\frac{1}{F}
$$

- but this arrangement cannot be used in practice
- A 3-lens telescope can address the problem within limited space
$\left[\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -F_{1}^{-1} & 1\end{array}\right]\left[\begin{array}{cc}1 & L_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -F_{2}^{-1} & 1\end{array}\right]\left[\begin{array}{cc}1 & L_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -F_{1}^{-1} & 1\end{array}\right]\left[\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Choice of Optical Lens Material

Table for different material ($2.2 \mu \mathrm{~m}$)

material	n		$\mathrm{dn} / \mathrm{d} \lambda(\mu \mathrm{m}-1)$	$\mathrm{GVD}(\mathrm{fs} 2 / \mathrm{mm})$	$\mathrm{D}(\mathrm{ps} / \mathrm{nm} * \mathrm{~km})$	absorption(cm-1)
BK7_schott	1.4913	-0.016528	-148.08	57.64105785	0.18079	
S-BSL7(OHARA)	1.4911	-0.016	-139.26	54.20781818	n / a	
E-BK7(HIKARI)	1.4922	-0.01494	-106.97	41.63873554	n / a	
N-BAF10(schott)	1.6373	-0.016366	-126.97	49.4238595	0.116	
E-BAF10(HIKARI)	1.6377	-0.015435	-94.243	36.6846719	n / a	
N-BAK1(schott)	1.5473	-0.013673	-110.57	43.04005785	0.10246	
N-FK51A(schott)	1.4707	-0.0090109	-69.45	27.03384298	0.055554	
N-LASF9(schott)	1.8028	-0.017	-92.8	36.12297521	0.1037	
N-SF5(schott)	1.6316	-0.017728	-110.38	42.96609917	0.14267	
N-SF10(schott)	1.6821	-0.01758	-103.7	40.36586777	0.08	
N-SF11(schott)	1.7318	-0.018	-103.34	40.22573554	0.109	
Fused Silica	1.435	-0.016	-149.53	58.20547934	n / a	
Calcium Fluoride	1.4229	-0.0054083	-33.439	13.01633802	Good transmission	
Barium Fluoride	1.4641	-0.0032188	-9.7405	3.79155	Good tran smission	
Cesium Fluoride	1.4687	-0.00196	1.2522	-0.487426612	n / a	
Potassium Fluoride	1.3553	-0.00253	-10.8	4.203966942	n / a	
Lead Fluoride	1.7286	-0.0062161	21.853	-8.506415702	n / a	
Magnesium Fluoride	1.3754	-0.0096468	-42.47	16.53171074	n / a	
Zinc Selenide	2.44	-0.01114	250.31	-97.43471901	n / a	

Simulations with SRW (Synchrotron radiation workshop)

Jinhao Ruan and Matt Andorf

- SRW has an accurate model for SR and accounts for diffraction in the lenses and dispersion in their material
- Particle interaction with e.-m. wave is accounted separately
- Both transverse and longitudinal particle displacements are accounted
- Good coincidence with previously derived analytical formulas
- Simulations were helpful to understand details of interaction

Light pulse at front,center and back of kicker. Left with no dispersion, right with dispersion.
Note a particle would move from left to right relative to light pulse with the way time field is plotted.

Simulations with SRW (continue)

Green-no dispersion. Blue-dispersion

The effect of dispersion is light from front of pickup is not as focused as light from center/back.
Results in roughly 10\% descrease in maximum kick.

Simulations with SRW (continue)

Energy loss estimate with different number of undulator periods. Total undulator length is fixed to about 75 cm .

- Reduction of Cooling force with K_{u} is related to separation of radiation and particle due to motions in pickup and kicker undulators

Single Pass Optical Amplifier for OSC at IOTA

Matt Andorf and Philippe Piot

Basic Characteristics

- $\mathrm{Cr}: \mathrm{ZnSe}$ solid state lasing gain medium.
- Bandwidth FWHM 2.2-2.9 $\mu \mathrm{m}$.
-1 mm length ($\sim 1.44 \mathrm{~mm}$ delay).
- CW pumping at $1.93 \mu \mathrm{~m}$ with $\sim 100 \mathrm{~kW} / \mathrm{cm}^{2}$
- Pump wavelength chosen because
- High power (50-100 W) commercially available Thulium pump
- Reduction in heat deposited in crystal over shorter wavelengths
- Gain
- Combination of short crystal length, small signal intensity and depleted ground state gives rise to exponential signal growth through the crystal.
- Total gain in power, G=5

Single Pass Optical Amplifier for OSC at IOTA (2)

- The broadband pulse is modified in 3 ways while

$$
E_{2}(\omega, z)=E_{1}(\omega) \exp \left[i\left(z \beta+\phi_{a m p}\right)\right] G^{\frac{1}{2\left(1+\Delta x^{2}\right)}}
$$ passing through the amplifier

- Group Velocity Dispersion (GVD) from the host medium lengthens the pulse and introduces energy chirp, $\beta=2 \pi n / \Lambda$
- Gain narrowing (pulse broadening) from finite amplifier bandwidth
- Phase distortions from amplification.
- Lengthening through GVD has largest effect, works to reduce field amplitude.

$$
\gamma_{12}(\tau)=\frac{\left\langle E_{1}(t) E_{2}^{*}(t+\tau)\right\rangle}{\left.\left.\left.\left[\left.\langle | E_{1}\right|^{2}\right\rangle\langle | E_{2}\right|^{2}\right\rangle\right]^{1 / 2}}
$$

- Correlation function multiplied by gain estimates total increase in kick $\gamma_{12} \sqrt{G}=2.05$
- Amplifier increases
 damping rates by a factor of 2

Basics of OSC - Radiation from Undulator

Basics of OSC - Radiation Focusing to Kicker Undulator

- Modified Kirchhoff formula

$$
\begin{aligned}
E(r)= & \frac{\omega}{2 \pi i c} \int_{S} \frac{E\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} \mathrm{e}^{i \omega\left|r-r^{\prime}\right|} d s^{\prime} \\
& \Rightarrow \quad E(r)=\frac{1}{2 \pi i c} \int_{S} \frac{\omega\left(r^{\prime}\right) E\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} \mathrm{e}^{i \omega\left|r-r^{\prime}\right|} d s^{\prime}
\end{aligned}
$$

- Effect of higher harmonics
- Higher harmonics are normally located outside window of optical lens transparency and are absorbed in the lens material

Dependences of retarded time (t_{p}) and Ex on time for helical undulator

- Only first harmonic is retained in the calculations presented below

Basics of OSC - Longitudinal Kick for $K \ll 1$

- For $K \ll 1$ refocused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently:

$$
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2} e^{i \phi} \xrightarrow{\mathbf{E}_{1}=\mathbf{E}_{2}} 2 \cos (\phi / 2) \mathbf{E}_{1} e^{i \phi / 2}
$$

\Rightarrow Energy loss after passing 2 undulators

$$
\Delta U \propto\left|E^{2}\right|=4 \cos (\phi / 2)^{2}\left|\mathbf{E}_{1}^{2}\right|=2(1+\cos \phi)\left|\mathbf{E}_{1}^{2}\right|=2\left(1+\cos \left(k M_{56} \frac{\Delta p}{p}\right)\right)\left|\mathbf{E}_{1}^{2}\right|
$$

- Large derivative of energy loss on momentum amplifies damping rates and creates a possibility to achieve damping without optical amplifier
- SR damping: $\lambda_{1-S R} \approx \frac{2 \Delta U_{S R}}{p c} f_{0}$

- OSC:

$$
\lambda_{1-O S C} \approx f_{0} \frac{2 \Delta U_{w g l}}{p c}\left(G k M_{56}\right) \xrightarrow{k M_{56}(\Delta p / p)_{\max }=\pi} f_{0} \frac{2 \Delta U_{w g l}}{p c}\left(\frac{G}{(\Delta p / p)_{\max }}\right)
$$

where G - optical amplifier gain, $(\Delta p / p)_{\text {max }}$ - cooling system acceptance $\Rightarrow \lambda_{1-\text { osc }} \propto B^{2} L \propto K^{2} L$ - but cooling efficiency drops with K increase above ~ 1

Basics of OSC - Longitudinal Kick for K<<1(continue)

- Radiation wavelength depends on θ as

$$
\lambda=\frac{\lambda}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)
$$

Limitation of system bandwidth by (1) optical amplifier band or (2) subtended angle reduce damping rate

$$
\lambda_{1 / S R}=\lambda_{1 \mid-S R 0} F\left(\gamma \theta_{\mathrm{m}}\right), \quad F(x)=1-\frac{1}{\left(1+x^{2}\right)^{3}}
$$

- For narrow band: $\Delta U_{\text {wgl }}=\Delta U_{\text {wgl0 }}\left(\frac{3 \Delta \omega}{\omega}\right), \frac{3 \Delta \omega}{\omega} \ll 1$
where $\Delta U_{\text {wgl0 }}=\frac{e^{4} B^{2} \gamma^{2} L}{3 m^{2} c^{4}}\left\{\begin{array}{ll}1, & \text { Flat wiggler } \\ 2, & \text { Helical wiggler }\end{array}\right.$ the energy radiated in one undulator

Basics of OSC - Radiation from Flat Undulator

- For arbitrary undulator parameter we have

$$
\begin{aligned}
& \Delta U_{\text {OSC_F } F}=\frac{1}{2} \frac{4 e^{4} B_{0}^{2} \gamma^{2} L}{3 m^{2} c^{4}} G F_{f}\left(K, \gamma \theta_{\max }\right) F_{u}\left(\kappa_{u}\right) \\
& F_{u}\left(\kappa_{u}\right)=\mathrm{J}_{0}\left(\kappa_{u}\right)-\mathrm{J}_{1}\left(\kappa_{u}\right), \quad \kappa_{u}=K^{2} /\left(4\left(1+K^{2} / 2\right)\right)
\end{aligned}
$$

Fitting results of numerical integration yields:

$$
F_{h}(K, \infty) \approx \frac{1}{1+1.07 K^{2}+0.11 K^{3}+0.36 K^{4}}, \quad K \equiv \gamma \theta_{e} \leq 4
$$

- Dependence of wave length on θ :
$\lambda \approx \frac{\lambda_{\text {wgl }}}{2 \gamma^{2}}\left(1+\gamma^{2}\left(\theta^{2}+\frac{\theta_{e}^{2}}{2}\right)\right)$

$$
K \equiv \gamma \theta_{e}
$$

- Flat undulator is "more effective" than the helical one
- For the same K and $\lambda_{\text {wgl }}$ flat undulator generates shorter wave lengths
- For both cases of the flat and helical undulators and for fixed B a decrease of $\lambda_{\text {wgI }}$ and, consequently, λ yields kick increase
- but wavelength is limited by both beam optics and light focusing

