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Electron lens layout in IOTA (top view)
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Electron-lens layout in IOTA
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Roles of the IOTA electron lens
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•Nonlinear element for integrable optics
• thin McMillan lens
•thick axially symmetric lens

•Electron cooler
•extend range of proton emittances and lifetimes for experiments
•new research on electron cooling reach in nonlinear lattice

•Space-charge compensator for rings
•shaped beam from electron gun
•trapped electron column from residual gas

[“Electron lens” = magnetically confined electrons acting on the circulating beam]

Antipov et al., JINST 12, T03002 (2017)
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Typical e-lens parameters
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Cathode-anode voltage 0.1 -- 10 kV

Electron beam current 5 mA -- 5 A

Current density on axis 0.1 -- 12 A/cm2

Main solenoid length 0.7 m

Main solenoid field 0.1 -- 0.8 T

Gun/collector solenoid fields 0.1 -- 0.4 T

Max. cathode radius 15 mm

Lattice amplitude function 0.5 -- 10 m

Circulating beam size (rms), e- 0.1 -- 0.5 mm

Circulating beam size (rms), p 1 -- 5 mm



Electron lenses for nonlinear integrable optics
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Nonlinear integrable optics with electron lenses
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Use the electromagnetic field generated by the electron distribution to 
provide the desired nonlinear field.
Linear focusing strength on axis ~ 1/m:

1. Axially symmetric thin kick of 
McMillan type

2. Axially symmetric kick 
in long solenoid

current density

transverse 
kick

Any axially-symmetric current 
distribution
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More robust
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Center of circle for bending solenoid placement z, x 40 cm, 30 cm
Radius of circle for bending solenoid placement R

bend,sol

29.56 cm
Injection angle '

inj

70�

z-axis crossing of straight line from injection z

inj

64 cm
Distance between gun and transfer solenoid d

gun,transfer

7.5 cm

Figure 1: Geometric parameters of the initial electron lens bend design.
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Gun 12.5 23.7 100 1.11 70 (0.517, 0.828)
Transfer 3.5 7.5 100 2.27 70 r

trans

= (0.2114, 0.717)
Bend 1 9.65 13.65 53.9 6.28 43 r

bend,1

= (0.02692, 0.682)
Bend 2 6.33 10.33 74.9 6.28 33.5 r
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= (0.0118, 0.615)
Bend 3 4.17 8.17 100 6.28 24 r
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= (0.0, 0.5555)
Main 2.5 10 330 3.53 (0.0, 0.0)

Figure 2: Parameters of the solenoids required for the initial electron lens bend design.

Figure 3: Schematic of an initial bend design for the IOTA electron lens.
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Design of beam transport in electron lens
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1.Field-line mapping
2.Single-particle 

tracking
3.Tracking with space 

charge

Minimize distortions
Provide input for tracking in ring

Noll and Stancari,
FERMILAB-TM-2598-AD-APC;
Noll, PhD Thesis (2016)
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Design of McMillan e-gun
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Is it possible to generate the required current-density profile?
Contrasting requirements of high yield and peaked distribution

Optimization of the e-gun geometry to match the desired profile

Space-charge-limited emission determined mostly by E-field at surface =>
•optimize E-field first (fast)
•then, refine beam profile (slower), iterating calculation of space-charge-
limited emission

j(r) =
j0a4

(r2 + a2)2
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Electron gun parametric geometry
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Optimization of the electric field at the emitter
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Deviations from target distribution < 5% of peak field
Comparable agreement between codes Spiffe and Warp

R
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Electric field distribution
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Max field is
1.1 MV/m

There is margin to decrease distances and increase perveance

Histogram of electric field magnitude 
on simulation mesh
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Current density distribution and sensitivity
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Space-charge-limited simulation of beam emission

Field optimization provides good starting point for current-density 
optimization (within 10% of target)

0.24 A @ 10 kV
total current is still low
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Fermilab electron-lens test stand
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Accuracy of profile measurements in e-lens test stand
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Current density measured with beam scans over collector pinhole
Very reproducible, but misalignments may introduce systematics
No observed effects due to repetition rate (ions, ...)
Recent studies done with a hollow beam (larger and more sensitive to distortions)
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Can we also measure the velocity distribution vs. radius?
Charge density vs. current density



Space-charge compensation
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Space-charge compensation in rings
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Space-charge compensation routinely used in linacs, rf photoinjectors
In rings, it would enable higher intensities
A challenging subject: local correction of global effect?
Issues: high charge densities, lattice distortions, beam-plasma instabilities
Implementation with electron lens has advantage of magnetic confinement 
for stability
Two concepts:

- given profile (transverse/longitudinal?) from electron gun or
- electrons from residual-gas ionization trapped in Penning-Malmberg 
configuration (“electron column”)

Numerical simulation studies to guide experiments in IOTA
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Concept of electron column
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Main solenoid Corrector coils

Confining
electrodesCollector Collector

Residual-gas
ionization and
recombination

proton
beam

In strong field, ionization electrons mirror transverse profile of protons
How does the e-column evolve?
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Electron-column simulations in IOTA with Warp
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Trap configuration: 1 m length, [0 T, 0.2 T] solenoid, [0 V, -200 V] electrodes

Residual gas: H2, [10-3 torr, 10-5 torr] (to enhance ionization rates)

Protons: 2.5 MeV, 8 mA (~5 V on axis), various profiles and time structures

New protons injected in interaction volume (no ring circulation yet)

Ionization processes:

                                                                             σ = 1.5×10-21 m2 

                                                                             σ = 1.3×10-20 m2

No recombination, double ionization, hydrogen clusters, ...

p+H2 ! p+H+
2 + e�

e� +H2 ! 2e� +H+
2

5.4 keV max.
most below 0.2 keV
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Simulation layout
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Electron density buildup vs. electrode voltage
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Park et al., NAPAC16

Continuous proton beam
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Example of particle distributions
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Continuous proton beam
B = 0.1 T, V = -5 V, p = 5×10-4 torr

Electrons reach equilibrium transverse distribution
They may have enough energy to escape longitudinally
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Numerical calculations with pulsed proton beam
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How does the electron column evolve after one proton beam traversal?

Protons on for 100 ns, then off for 900 ns (as an example)

Transit time in e-column is 46 ns, revolution time in IOTA is 1.8 us

link to animation

https://indico.fnal.gov/getFile.py/access?contribId=37&resId=0&materialId=0&confId=13616
https://indico.fnal.gov/getFile.py/access?contribId=37&resId=0&materialId=0&confId=13616
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Longitudinal electron density vs. time
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Longitudinal electron density vs. time
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Evolution of electron density
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Numerical calculations with pulsed proton beam
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How does the electron column evolve after one proton beam traversal?

Protons on for 100 ns, then off for 900 ns

Electrons are confined transversely and oscillate longitudinally, with little loss

Ions are lost both transversely and longitudinally

Oscillations are determined by secondary electron velocity and by plasma 
frequency

Distributed electrode voltages can help shape the charge distribution



Electron cooling
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Electron cooling
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1.36-keV electrons match the velocity of 2.5-MeV protons
A wider range of proton lifetimes and brightnesses will be available for 
experiments
Cooling option determined the co-propagating configuration of the e-lens

Cooling rates of 0.1 s are achievable
Emittances can be reduced by a factor 10
Better models of magnetized cooling are needed for predictions

Does nonlinear integrable optics combined with cooling enable higher 
brightnesses?

Stancari et al., COOL15
Antipov et al., JINST 12, T03002 (2017)
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IOTA

H0

   

Proton beam diagnostics through recombination
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Spontaneous recombination generates neutral hydrogen with distribution of 
Rydberg states, some of which are Lorentz-stripped in e-lens toroid and 
IOTA dipole

Recombination rate at detector is ~ 50 kHz; good compromise between 
beam lifetime and measurement time

p+ e� ! H0 + h⌫

A critical diagnostic tool for cooling and proton beam evolution
Hardware options identified; needs final design



Hardware status
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Hardware status
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Gun and collector solenoids 
reused from Tevatron
Now awaiting for magnetic 
measurements
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Hardware status
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Vacuum tests of e-gun and 
collector are complete
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Hardware status
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Several Tevatron power supplies for magnets and HV can be reused
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Hardware status
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Magnetic system (main and transport solenoids) 
is behind schedule, limited by resources
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Electrode and pickup structure
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Electrodes will serve as
•beam-position monitors
•signal pickups for charge oscillations
•trapping/clearing electrodes

Antenna for high-frequency plasma and cyclotron osc.
=> estimates of electron density and temperature

Need technical design, hardware, electronics

5 diagonally split cylinders or combined horiz./vert. striplines
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New diagnostic stations for e-beam current and profile
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YAG crystal
and mirror

optical
calibration

target
TZM-alloy plate
with pinhole and
small collector

stepper motor

pneumatic
actuator

vacuum
window to

camera
electron
beam

pumping port

Most components are 
already at Fermilab



Conclusions
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Conclusions
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The electron lens in IOTA will enable new experiments in nonlinear optics, 
electron cooling, and space-charge compensation

Design challenges are related to the multiple functions and the limited 
physical space

The project is closely related to electron-lens applications in other machines, 
such as beam-beam compensation and hollow electron beam collimation

There are several opportunities for collaborators to make an impact: theory, 
numerical calculations, diagnostics, hardware, experiments

Thank you fo
r your atten

tion!


