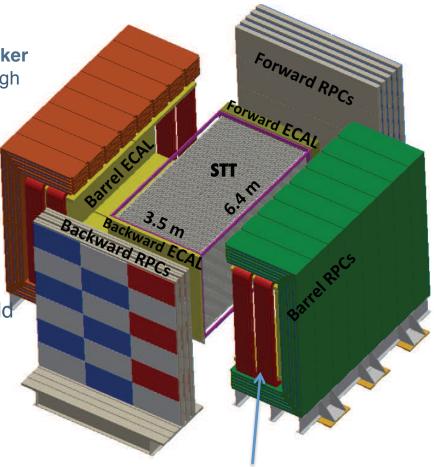
High Resolution Fine-Grained Tracker: Reference Near Detector for DUNE

Bipul Bhuyan Indian Institute of Technology Guwahati

Near Detector Workshop Fermi Lab

March 27 - 29, 2017


FGT Near Detector Concept

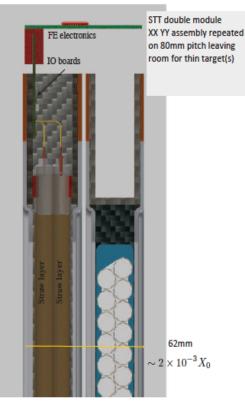
Four components detector:

- An active low density (0.1 g/cm³) straw tube tracker (STT) in a 0.4 T magnetic field with embedded high pressure argon gas targets.
- Tunable thin target(s) spread over entire tracking volume: Target mass ~ 7 ton
- Combined particle –ID and tracking for precise reconstruction and 4-momenta
 - dE/dx : Proton ID, π^{\pm}, K^{\pm}
 - Transition Radiation: e⁻/e⁺ ID, γ

\diamond 4 π lead-plastic scintillator ECAL in dipole B field

- ♦ Transverse and longitudinal segmentation.
- ♦ Energy resolution: 6%/ \sqrt{E} (GeV) for downstream ECAL; Time resolution: 1 ns for E > 100 MeV
- \diamond 4 π RPC based muon detector
 - $\diamond \mu^+ / \mu^-$ identification.

Magnet coils

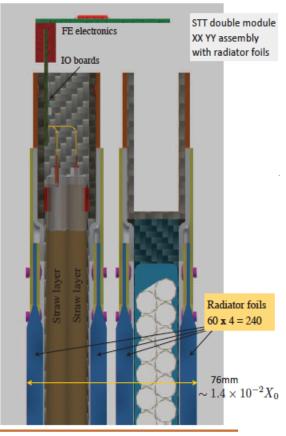


Straw Tube Tracker (STT)

- ♦ Proven Technology: Improve on NOMAD low density spectrometer
 - ✓ Small cylindrical drift tubes insensitive to track angles.
 - ✓ More sampling points along the track: x 6 perpendicular to beam axis and x2 along the beam axis.
 - Efficient proton reconstruction down to 250 MeV/c, particle identification via dE/dX and Transition Radiation. Proton and electron identification with little background.

♦ STT design parameters:

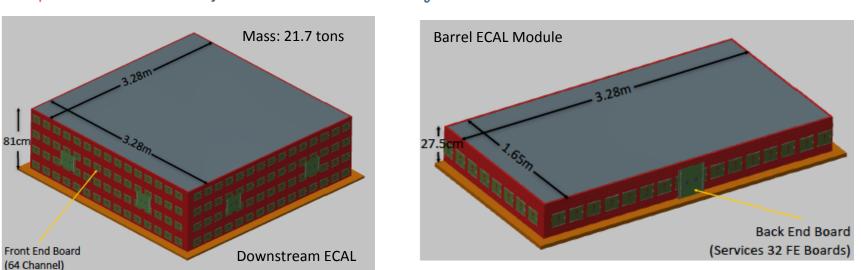
- ✓ Straw inner diameter: 9.530 ± 0.005 mm
- ✓ Straw walls 70 ± 5 µm Kapton 160XC370/100HN (ρ =1.42, x_0 = 28.6 cm, each straw < 5 × 10⁻⁴ X₀)
- $\checkmark\,$ Gold plated tungsten wire: 20 μm diameter; wire tension around 50 g.
- Straws are arranged in double layers of 336 straws glued together (epoxy glue) inserted in C-fiber composite frames.
- ✓ Each double module assembly will have (XX+YY) orientation with FE electronic (each XX+YY tracking module ~ $2 \times 10^{-3} X_0$)
- \checkmark Operate with 70%/30% Xe/CO₂ gas mixture.
- Readout at both ends of straws (IO and FE boards on all sides of each XX + YY STT module)
- ✓ 160 modules arranged into 80 double modules over ~ 6.4 m (total 107,520 straws)
- Add dedicated thin targets, including pressurized Ar gas to each STT module keeping the average density same for required target mass.



STT: Radiator Targets

- ♦ Main $v(\overline{v})$ target in the form of multiple thin polypropylene foils (radiator targets)
 ✓ Use target material for particle identification via Transition Radiation (TR)
- Radiator target is integrated at both sides of each STT (double layer) module to minimize the overall thickness (foils can be removed if needed)
 - ✓ Embossed radiator foils: 25 µm thick, 125 µm air gaps;
 - Total number of radiator foils: 240 per XXYY module arranged into 4 radiators composed of 60 foils each;
 - \checkmark Total radiator mass in each XXYY module: 69.1 kg, 1.25 × 10⁻² X_{0.}
 - Radiator represents 82.6% of the total mass of each STT module
 - Tunable for desired statistics and momentum resolution

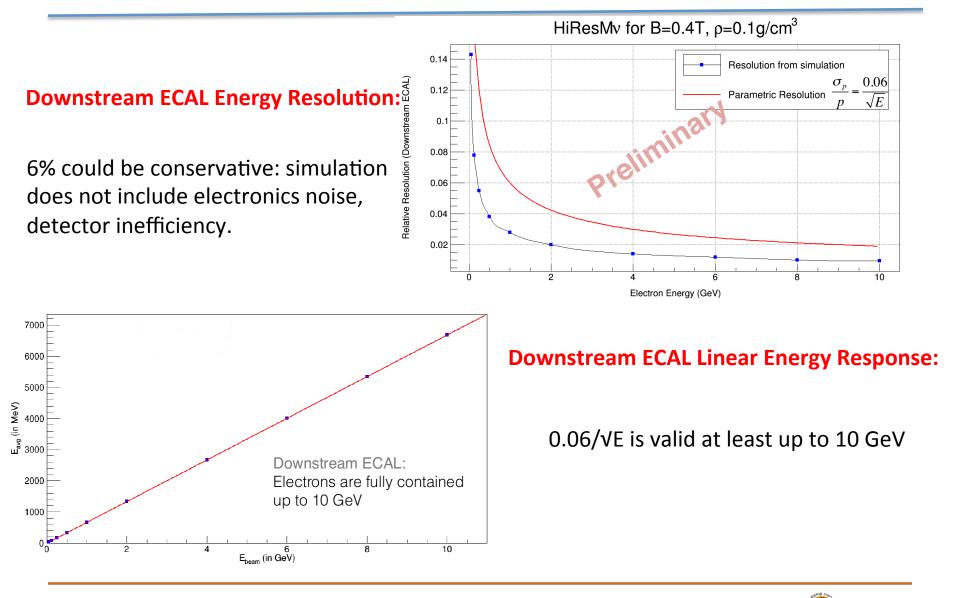
Performance Metric	Value
Vertex resolution	0.1 mm
Angular resolution	2 mrad
E_e resolution	5%
E_{μ} resolution	5%
$ u_{\mu}/\overline{ u}_{\mu} { m I\!D}$	Yes
$\nu_e / \overline{\nu}_e \mathrm{ID}$	Yes
$NC\pi^0/CCe$ rejection	0.1%
NC γ /CC e rejection	0.2%
$NC\mu/CCe$ rejection	0.01%



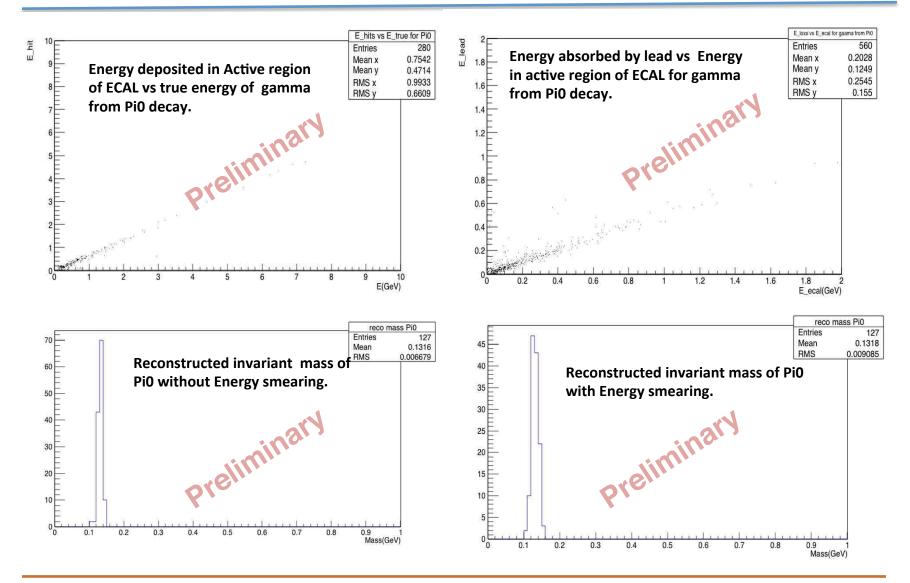
The Electromagnetic Calorimeter

♦ Reconstruction of e⁺/e⁻, γ with accuracy comparable to μ^+ / μ^- and FD

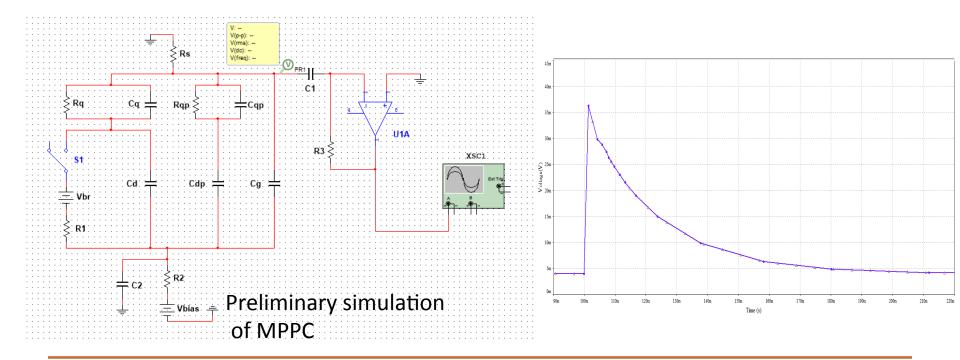
• Containment of > 90% of shower energy; energy resolution < $6\% / \sqrt{E}$ (GeV)


- Sampling electromagnetic calorimeter with Pb absorbers and alternating horizontal and vertical (XYXYXY...) 3.2 m x 2.5 cm x 1 cm plastic scintillator bars readout at both ends by 1 mm diameter extruded WLS fibers and SiPMs.
 - Downstream ECAL: 60 layers with 1.75 mm Pb plates. 20 X₀.
 - Barrel ECAL: Will surround the sides of the STT. 18 layers with 3.5 mm of Pb. 10 X₀.

- Upstream ECAL: 18 layers with 3.5 mm Pb.10 X₀.

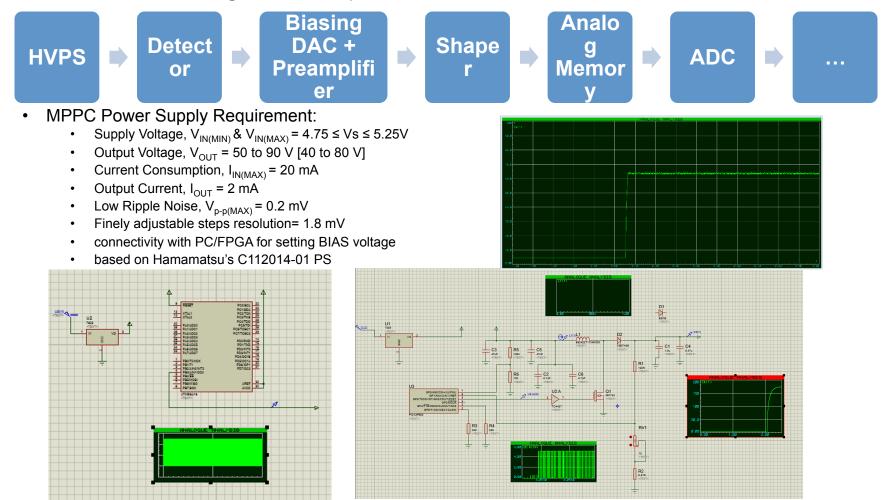

Detector Performance: ECAL

Pi0 Reconstruction in ECAL


Vikas Gupta, IIT Guwahati

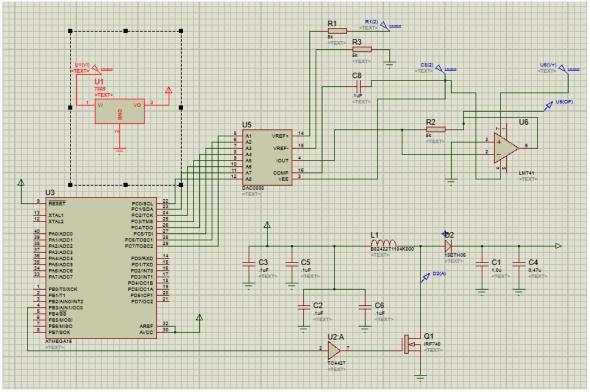
ECAL Readout

- Simulation and prototype construction of the ECAL readout electronics is progressing quite well.
 - Similar MPPCs as in ND280 of T2K is being considered.
 - ✓ Model S13360-1350CS by Hamamatsu
 - \checkmark 667 pixels (with each pixel 50 x 50 μm^2) ceramic device
 - ✓ Small active area 1.3 x 1.3 mm²
 - ✓ Lower operating voltage ~53 V, better PDE, lower noise

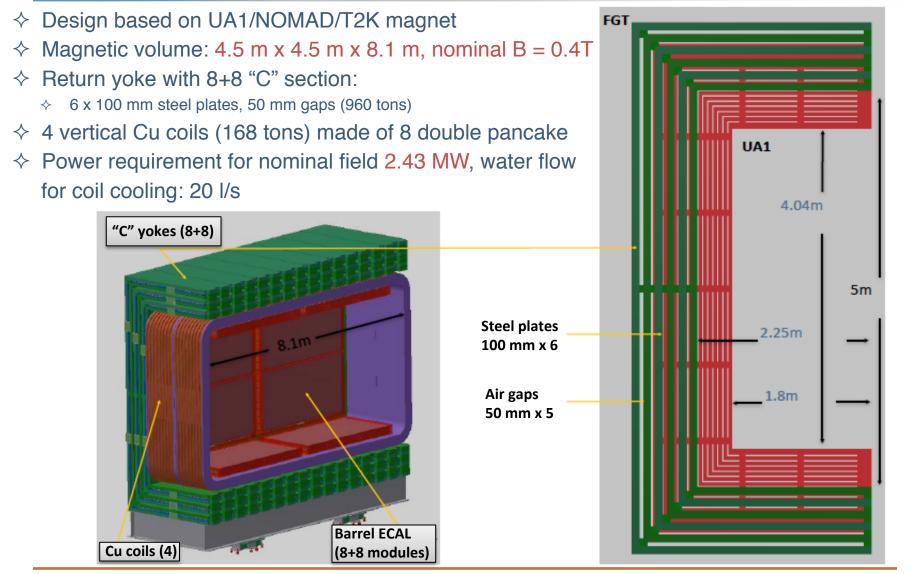


ECAL Readout

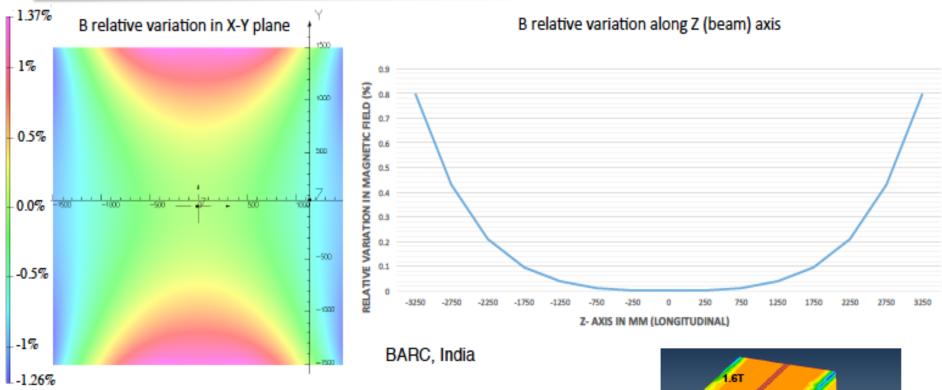
Maharnab Bhattacharjee, IIT Guwahati

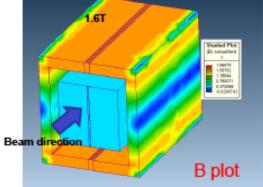

♦ Simulation and testing of each step of readout ASIC

HVPS simulation using PWM drive for MOSFET; with different component (L, C,) and PWM driver selections

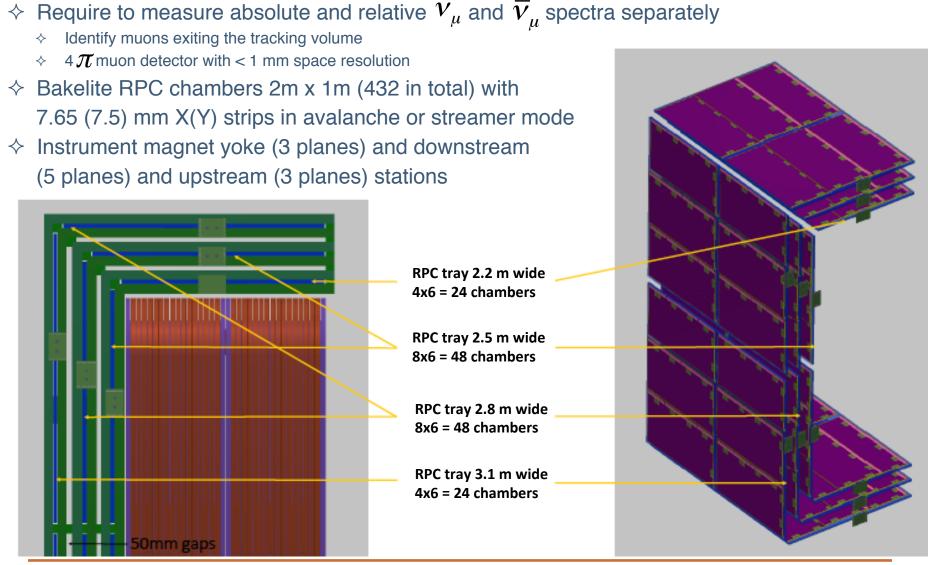

- Preliminary design of a prototype module with HVPS, HV DAC, preamplification stages with current/ voltage monitors and temperature/ humidity sensor circuits, each with 4 to 16 ch., having good signal-noise ratio.
- Adding amplification, memory stages (Shaper, analogue memory, ADC etc) to the prototype module soon.

Development of the prototype board is under progress.


The Dipole Magnet



Dipole Magnet Simulation



B uniformity in 3.5 m x 3.5 m x 7 m
 tracking volume is better than 2% (field simulations)

The Muon Detector

The Muon Detector

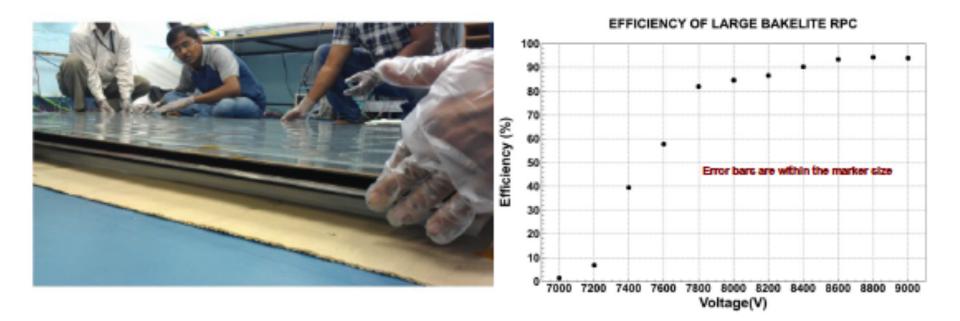
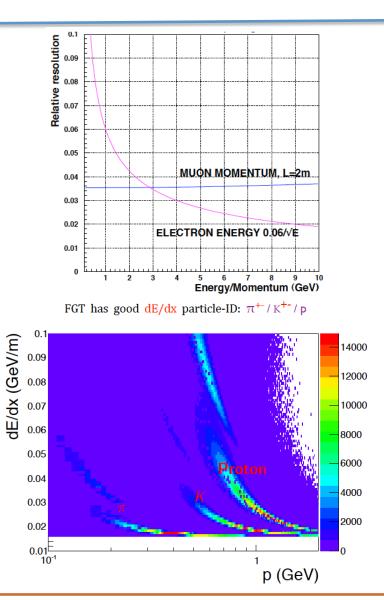


Figure 7.6: Fabrication of a large (2.4 m × 1.2 m) RPC prototype at the Variable Energy Cyclotron Centre (VECC) in India (left) and corresponding efficiency tests (right).

FGT Readout Electronics

- ♦ Near Detector should cater pulse structure of the beam (~ 9.6 μ s spill) and provide GPS time stamp to identify origin and nature of events.
- ♦ Fast readout electronics for STT, ECAL and muon detector (rise time a few ns) with time stamping (resolution ~ 1 ns) and charge measurements.
 - STT and ECAL: total charge and time associated with a given hit, in-sync with beam spill triggers.
 - ♦ MuID RPCs: provide the position and time associated with a traversing track.
- \diamond Expected rates per spill are ~0.2 events/ton.
 - \diamond Negligible pile-up due to size ~ 160 m³ and timing resolution ~ 1 ns
- ♦ STT, ECAL and the backward RPC can define various triggers
 - ♦ Hits stored in pipelines for a later decision

Detector	# of Channels
STT	215,040
ECAL	52,224
MuID	165,888



FGT Detector Performance

	Expectation		
Value			Res.
Muon p Electron p Pion p Proton p ECAL E			3.5%
			12%
			7.5%
			5.5%
		6	<mark>3%/√</mark> E (GeV)
Muon	angle		1 mrad
Electro	n angle	2	2 mrad
Charge S	eparation	~	~100%
Spatial	(radial)	<	:200µm
Vertex	(2+ trk)	with	iin 100µm

Event rates at FGT (5 years v run)

2752				
	Interaction	Events	Cuts	
Ī	Inclusive ν_{μ} -CC	38.2×10^{6}	FV	Accumpti
	ν_{μ} -QE-CC	8.1×10^{6}	FV	Assumpti ND is at a
	ν_{μ} -Res-CC	11.0×10^{6}	FV	459 m fro
	$ u_{\mu}$ Coherent- π^+	0.63×10^{6}	FV	target.
	Inclusive ν_{μ} -NC	4.1×10^{6}	$FV \& E_{Had} \ge 3 \text{ GeV}$	
	Coherent- π^0	0.32×10^{6}	FV	
Ī	IMD	1944	FV ($E_{\nu} \geq 11$ GeV)	
	$ u_{\mu}$ -e NC	4700	FV	CC events in
	Contaminant CC's			Inherent "co
	ν_{e} -CC	4.2×10^{5}	FV	neutrinos in
	$\bar{\nu}_{e}$ -CC	4.2×10^{4}	FV	$\overline{\boldsymbol{\nu}_{e}}, \overline{\boldsymbol{\nu}_{e}}, \text{ and }$
	$\bar{ u}_{\mu}$ -CC	2.5×10^{6}	FV	

Assumption: ND is at a distance of 459 m from the primary target.

CC events induced by the inherent "contaminant" neutrinos in the beam: $\nu_e, \ \overline{\nu}_e, \ and \ \overline{\nu}_{\mu}.$

 Assuming 1.8 x 10⁷ seconds/year as a the operational duration of the LBNF beam with 120 GeV protons from the Main Injector with 700 kW

♦ A 5-year run will yield 3.2 x 10²¹ protons-on-target (POT)

♦ The FGT Provides:

 $\diamond Very$ good charged particle tracking via the STT, good charged separation since the detector is magnetized.

♦Good momentum/energy resolution via STT/ECAL.

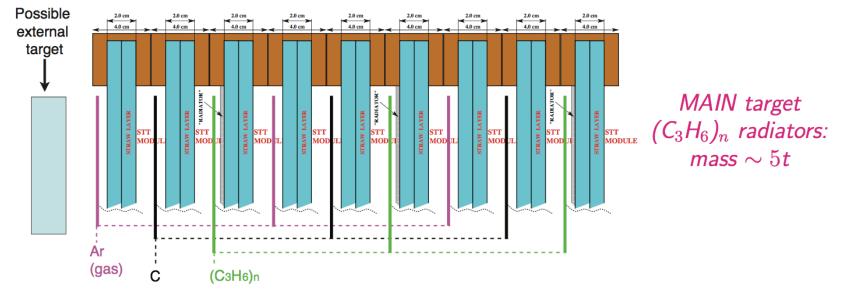
Backup slides

DUNE ND: Capability of FGT

♦ Determine the relative abundance and energy spectrum of the four V species in LBNF beam: v_{μ} , \bar{v}_{μ} , v_{e} , and \bar{v}_{e} through CC-interactions.

 \Rightarrow Prediction of FD/ND (E_{ν}) fluxes to ~ 1%

- ♦ Determination of the absolute V_{μ} and \overline{V}_{μ} fluxes to ~ 3%
- ♦ Measure cross-sections and exclusive topologies of NC and CC interactions
 - \diamond Event by event NC/CC separation as a function of hadronic energy E_{had}
 - \diamond Measurement of π^{0} and γ yields in both NC and CC to better than 5%
 - \diamond Measurement of π^{\pm} / K^{\pm} in CC and NC to constrain π^{\pm} / $K^{\pm} \rightarrow \mu^{\pm}$ decays.


 \diamond Measure exclusive and semi-exclusive NC and CC v-Ar interactions: Quasi-elastic, single π , Deep Inelastic Scattering (DIS) and coherent pion production.

♦ Backgrounds to appearance and disappearance channels.

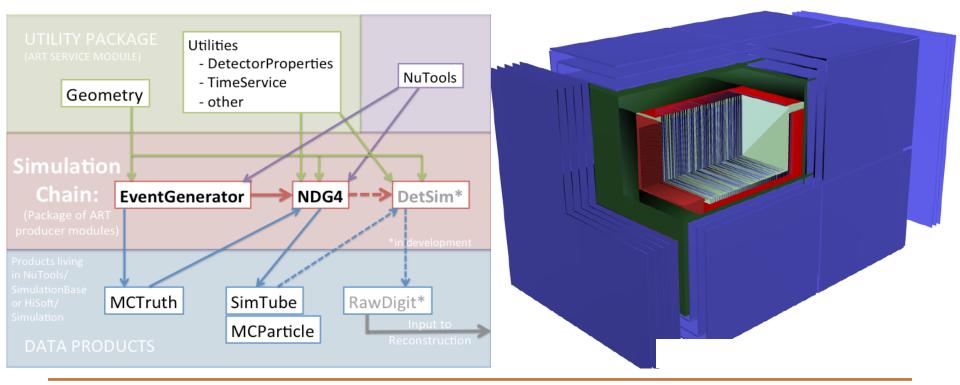
- ♦ Calibration of the absolute energy scale in v Ar and $\overline{v} Ar$ interactions.
- $\diamond~$ Quantify ${m
 u}$ vs $ar{m
 u}$ asymmetries in $E_{_{m
 u}}$ scale, flux and interactions cross-sections for $\delta_{_{CP}}$

NUCLEAR TARGETS

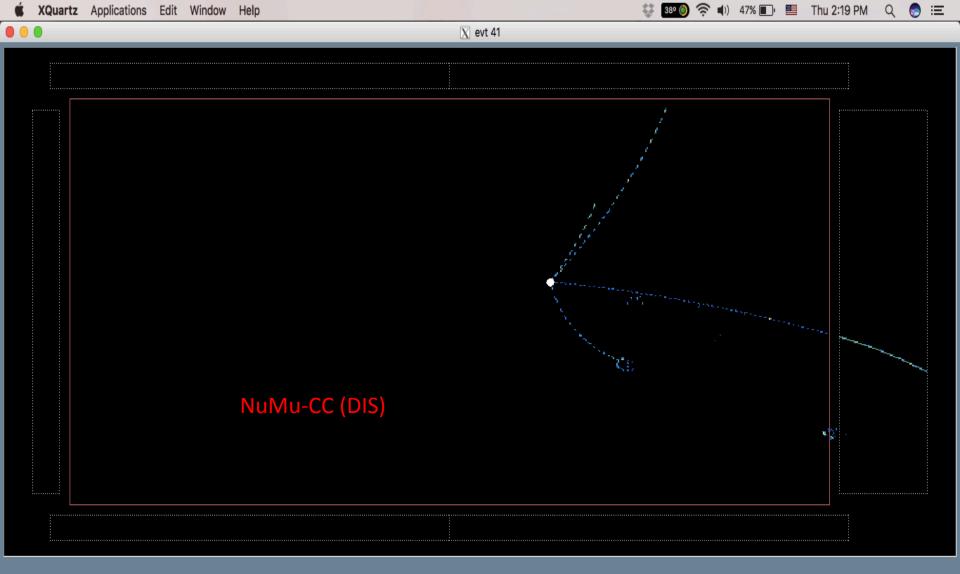
- Multiple nuclear targets in STT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, H_2O , D_2O , etc. \implies Separation from excellent vertex (~ 100µm) and angular (< 2 mrad) resolutions
- ← Subtraction of C TARGET (0.5 tons) from polypropylene $(C_3H_6)_n$ RADIATORS provides $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3(sub.) \nu(\bar{\nu})$ CC interactions on free proton \implies Absolute $\bar{\nu}_{\mu}$ flux from QE \implies Model-independent measurement of nuclear effects and FSI from RATIOS A/H

Pressurized Ar GAS target (~ 140 atm) inside SS/C tubes and solid Ca TARGET provide detailed understanding of the FD A = 40 target
 Collect ×10 unoscillated FD statistics on Ar target
 Study of flavor dependence & isospin physics

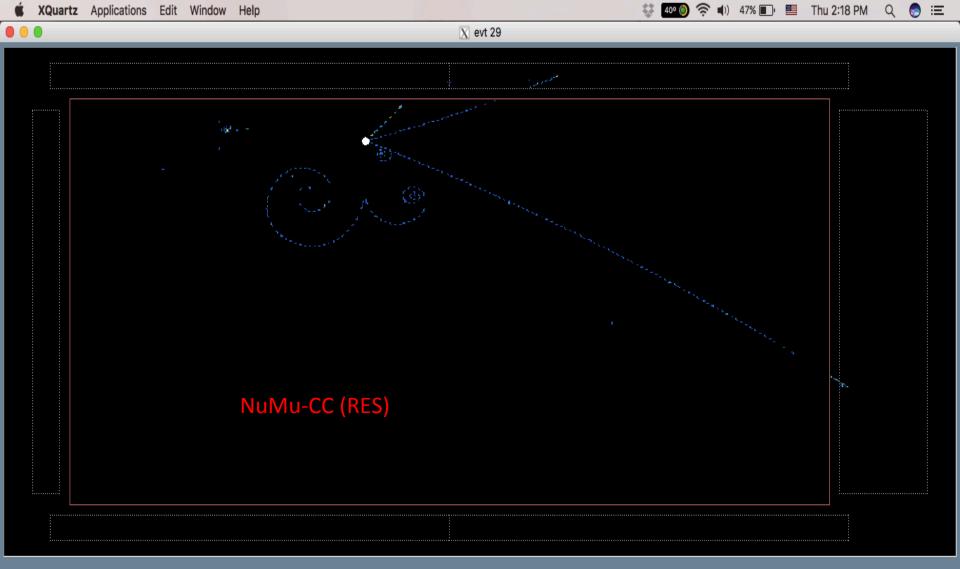
LONGITUDINAL PROFILE OF STT


- + Placeholder composition of STT planes (from downstream to upstream):
 - Total of 75 STT XXYY modules with 4 straw layers and integrated radiators \implies Overall length of 600 cm $\rightarrow \sim 1.09X_0$ and mass ~ 5.18 tons
 - Total of 2 STT XXYY modules with radiators replaced by graphite targets (total 18 mm C) \implies Overall length 16 cm $\rightarrow \sim 0.093X_0$ ($\rho = 1.74$ g/cm³, $X_0 = 19.41$ cm) and C mass ~ 384 kg
 - One plane with 7 mm thick Ca target with C-fiber/composite enclosure, followed by one STT XXYY module without radiators

 \implies Overall length 8 cm $\rightarrow \sim 0.067 X_0$ (ho = 1.54 g/cm³, $X_0 = 10.41$ cm) and mass 132 kg


- One plane with 68 2-in inner diameter (0.04-in wall) C-composite tubes filled with pressurized Ar gas at 140 atm, followed by one STT XXYY module without radiators
 ⇒ Overall length 12 cm → ~ 0.02X₀ and Ar (C) mass ~ 112 (66) kg
- One plane with 1 mm steel (Fe) target followed by one STT XXYY module without radiators \implies Overall length 8 cm $\rightarrow \sim 0.057X_0$ ($\rho = 7.874$ g/cm³, $X_0 = 1.76$ cm) and mass 96.5 kg
- \implies Total longitudinal STT length 644 cm equivalent to \sim 1.3 X_0 and \sim 7.1 tons
- Need to optimize the nuclear targets with complete GEANT4 simulations of the detector performance and corresponding physics sensitivity studies.

FGT Geant Simulation


- ♦ FGT ND G4 Simulation already exists: *HiSoft* Framework
 - ♦ Based on the ART framework (following LArSoft)
 - Uses MRB (Multi-Repository-Build) for building, versioned by GIT, interfaced with Geant4 through NuTools.
- ♦ Complete STT, ECAL, MuID, Magnet: GDML files generated with a python script.
- The FGT Software Repository: https://cdcvs.fnal.gov/redmine/projects/dunefgt/repository

Event 41	Vtx. 1/1	3.060 GeV NuMu-CC (DIS) 7 primaries: 1.593 GeV Muon (-), 1.674 GeV Neutron, 1.000 GeV Neutron, 1.076 GeV Proton, 0.188 GeV Pion (+), 1.109 GeV Proton, 0.194 GeV Pio,			
Beam Neutrino	Carbon	/nashome/v/vgupta2/extra/old_dune/srcs/screwed/EventGenerator/GENIE/hist_display.root			
		Open Exit Snapshot Draw Vtx Prev Evt 41 🗧 Next Evt MC particle: / Prev -9999 🖨 Next			
		Draw Level view color type ○ STT ○ ECAL ○ MulD ○ ⊻z ○ ⊻z ○ charge ○ time ○ sim ○ raw ○ reco			

Event 29	Vtx. 1/1	4.128 GeV NuMu-CC (Res)	4 primaries: 2.854 GeV Muon (-), 1.907 GeV Proton, 0.213 GeV Pi0, 1.027 GeV Proton,		
Beam Neutrino	Carbon	/nashome/v/vgupta2/extra/old_dune/srcs/screwed/EventGenerator/GENIE/hist_display.root			
		<u>O</u> pen <u>E</u> xit <u>S</u> napsho	Draw Vtx Prev Evt 29 🜩 Next Evt MC particle: Prev -9999 🜩 Next		
		Draw Level	<u>⊿uID</u> view color type <u>∆uID</u> view zz o charge time o sim o raw o reco		