Light Collection in LAr for DUNE Near Detector

Joint Institute for Nuclear Research

N.Anfimov, A.Olshevskiy, Z.Sadygov, A.Selyunin, A.Sotnikov

Presented by D. Denisov, Fermilab

DUNE Near Detector Workshop, Fermilab, March 28 2017

LAr TPC Option

Yesterday's talk by: James Sinclair (University of Bern)

Challenge of LAr TPC is long drift time/pileup – precision time measurement is important

JINR Group Experience with SiPMs

SiPM surface-pixillated structure

Another SiPM type: Deep MicroWell - DMWstructure

Surface-pixillated SiPMs are produced by many companies now

 JINR group has been conducting SiPM R&D over 20 years - Z. Sadygov

and others

 Unique development at JINR is DMW-SiPM promising for cryogenic temperatures applications

COMPASS Electromagnetic Calorimeter

- 194 modules with individual temperature stabilisation
- 144 WLS-fibers per module in 9 bundles with Winston cones
- 1746 SiPM readout channels with stabilised LED monitoring

The same technique is used for NICA/MPD experiment at JINR

Dubna, JINR group

Opera Target Tracker Experience

TIO

(theo:301.5)

Opera Target Tracker (TT): 6000 m²

~32000 strips of 2.6 \times 1 \times 680 cm³, light collected by Kuraray Y11 \emptyset =1mm fibers and registered by multi-anode Hamamatsu PMTs

JINR developed strip production at ISMA (Kharkov). Participated in TT modules assembly and calibration. Responsible for the TT data analysis.

Dubna, JINR group

Light Collection CDF Muon Counters

WLS-Fiber may capture of up to 5% of incident light[1]

[1] A.Artikov et al., Design and construction of new central and forward muon counters for CDF II. NIM A538(2005)358-371 CDF forward muon counters geometry provides ~ 30 ph.e. with PDE_{PMT} = 15 % -> 200 photons Thickness 1.5 cm -> 3.3 MeV per MIP -> ~ $3 \cdot 10^4$ photons Total collection efficiency ~ 0.7%

LAr Light Detection Evaluation

- 5 ·10⁴ γ @128 nm/MeV at 0 kV/cm, ~ 15% less at 1kV/cm [1]
- Tetraphenyl Butadiene (TPB) as a primary shifter 128 nm -> 425 nm
- Detector area $4 \times 5m^2 + 2 \times 1m^2 = 22 m^2$ ("Argontube design"),
 - ~ $1.9 \cdot 10^3 \gamma/m^2/MeV$
- $\rho = 1.4 \text{ g/cm}^3$ for LAr, MIP lose 3 MeV/cm, minimum distance = 1m,

 $E_{loss} = 300 \text{ MeV} \rightarrow 5.7 \cdot 10^5 \gamma/m^2$

- If light registration module size is 30 \times 30 cm ~ 0.1 m² ~ 5 $\cdot 10^4$ γ
- Target light collection efficiency ~1 %
- Expected number of ph.e. $N_{\text{ph.e.}} = \epsilon_{\text{TPB}} \times \epsilon_{\text{collectin}} \times \text{PDE}_{\text{SiPM}}$,

 $\epsilon_{\text{TPB}} \sim 0.5$ due to 2π light loss (TPB efficiency ~1) [2], $\epsilon_{\text{collection}} \sim 0.01$, PDE_{SiPM} ~ 0.3

N_{ph.e.} ~ 75 ph.e./module

[1] - T. Doke, H. J. Crawford, C. R. Gruhn et al., "Scintillation yields by relativistic heavy ions and the relation between ionization and scintillation in liquid argon", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 235 (1985) 136 – 141. doi:10.1016/0168-9002(85)90254-2.
[2] - V. M. Gehman et al., "Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths", Nucl.Instrum.Meth. A654 (2011) 116-121 arXiv:1104.3259 [astro-ph.IM] LA-UR-11-10447

Dubna, JINR group

Plans

Optimization of LAr scintillation light collection using SiPM

- We will consider different designs with TPB applied on: WLS-fiber ribbon, bulk+WLS-fibers, Dichroic filter (ARAPUCA-like), etc.
- Simulations of light collection for different designs and dimensions
- Will make prototypes of the light detection modules of different designs
- Test and optimize: efficiency, reliability, simplicity, cost
- Test in cryogenic conditions at Liquid Nitrogen at JINR
- Test in LAr at Bern University
- Develop the proposal for the optimized design

First Measurements

- Starting with WLS-plastic bulk of 10x10cm²
- Illuminating by stabilized light intensity LED @ 425 nm
- Applying different reflective materials at the bulk
- Dichroic mirror testing and application
- Cross check with simulation

