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From 35,000 feet

● We want to measure the flux at the near detector
● Generally:

● Ideally, identify a subsample with known σ(E) and 
simple, well-understood energy smearing matrix D

● Alternatively, use two samples:

1) Known absolute σ(E)

2) Known σ(E) shape, simple matrix D
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Sample 1: ν+e elastic scattering

● Purely electroweak process with known cross section*:

● No nuclear effects!
● Straightforward measurement of total flux
● Theoretically possible to measure Φ(E), but extracting 

y is very challenging
● More on this later

*radiative corrections need to be calculated and implemented in GENIE
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ν+e scattering

● Example from MINERvA shown
● Signal is very forward electron and no other activity

● Eeθ2 = 2me(1-y) < 2me

ν 
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ν+e signal spectrum

● Spectrum falls with 
electron energy

● Reconstruction will be 
very challenging at very 
low energies, and there 
will be some minimum 
shower energy

● In MINERvA this was 
0.8 GeV, but DUNE ND 
should do better

80GeV 3-horn optimized flux
Ar target @ 574m
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ν+e event rate in DUNE flux
80GeV 3-horn optimized flux

Ar target @ 574m
Step function efficiency

Total events vs. threshold
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Beam angle at 574m

● “Perfect” is if you knew the incoming neutrino 
direction exactly event-by-event

● “Real” is correcting for the mean beam angle only
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ν+e background

● Background events with 
Σ(charged hadron KE + 
EM total E) < 20 MeV

● π0 events have second 
photon energy < 50 
MeV, or photon opening 
angle < 2 mrad

● Assumes 10x rejection 
of γ (green), FGT CDR 
claims 100x
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Eθ2 cut in DUNE

● For 0.5 GeV threshold
● Not very sensitive to 

electron energy 
resolution

● For < 4mrad angular 
resolution, can cut at 
0.0015 and reduce 
background by a factor 
of 2 compared to 
MINERvA
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Potential for shape 
information

● 2-body scattering
● For known neutrino direction, can reconstruct neutrino 

energy from lepton kinematics
● Requires excellent angular resolution



Chris Marshall - ND workshop11

Neutrino energy residuals

● (Reco – True)/True neutrino energy
● Left: varying electron energy resolution
● Right: varying electron angle resolution
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Reconstructed neutrino energy

● y reconstructs negative when Eθ2 > 2 me

● Even with ~2mrad angular resolution, there are ~20% 
corrections to the spectrum
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ν+e conclusions

● 1% statistical uncertainty in ~100 ton MW yrs at 574m
● Background systematic of ~0.5% is realistic with 

expected improvements to generators
● Need < 0.6% uncertainty on efficiency to get to 1% 

systematic
● 5% energy resolution and 4-7 mrad angular resolution is 

good enough for rate measurement
● Shape is difficult, even with 1-2 mrad angular resolution
● At 360m, intrinsic neutrino direction dispersion roughly 

doubles
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Sample 2: Charged-current low-ν 

● Differential cross section can be written as:

● A, B, and C are integrals of structure functions

● ν = Ehad = Eν - Elep

● In practice, the low-ν sample is defined with some 
finite cut ν0 << Eν 
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Low-ν analysis
● Used by CCFR, NuTeV, NOMAD, MINOS, MINERvA
● Challenging at low neutrino energy, because ν/E must be 

small
● MINOS, MINERvA used variable ν cut to increase statistics at 

higher Eν, with additional systematics

● Signal is forward muon, very little else
● Systematics to worry about:

● Theoretical correction for B and C terms
● Hadronic energy resolution smearing events into or out of low-ν 

sample, especially neutrons
● Muon energy resolution
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Low-ν statistics 

● High statistics – few 100s of events per GeV per ton MW year in the tail with 
ν < 100 MeV

● 50 ton MW yr exposure gives ~1-2% statistical uncertainty per GeV in the tail
● Low-ν sample will be systematics dominated in DUNE
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Theoretical correction

● Event distribution 
divided by flux 
prediction and high-
energy cross section

● 10% correction at 1 GeV
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Muon reconstruction
● Muon energy 

resolution of 4-6% 
gives 1-2% dip in the 
peak due to smear-out

● Energy scale bias of 
1% is a 4% effect from 
1-2 GeV

● No acceptance effects 
simulated – perfect 
acceptance is assumed
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Neutrons

● Simulate neutrons in LAr in Geant4 at different initial 
energies

● Visible energy is all charged particle deposits, mostly due 
to knock-out protons 



Chris Marshall - ND workshop20

Hadron reconstruction
● Charged hadron 

reconstruction is a 
small effect

● Neutrons give a ~20% 
shape between 1-4 
GeV

● For ~3% shape error, 
need uncertainty on 
neutron response to be 
< 15%
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Low-ν conclusions

● Sufficiently high statistics to use flat ν < 0.1 GeV cut
● Theoretical correction is ~10% in oscillation region
● For 3% shape uncertainty, need:

● Uncertainty on theory correction < 20%
● Uncertainty on muon energy scale normalization < 1%
● Uncertainty on neutron response < 15%
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Backups

● There are hundreds of interesting plots in the zip files 
associated with this talk
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MINERvA Eθ2 cut
Require Eθ2 < 0.0032 GeV rad2

MINERvA
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ν+e systematics

● MINERvA LE measurement (124 events) had 5.1% 
systematic with 12.2% statistical uncertainty

● Leading systematics are background prediction (νe 
CCQE Q2 shape, NC π0), and detector (efficiency vs. 
electron energy)

● Must reduce:
● Background uncertainties
● Detector uncertainties
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ν+e background 
systematics

● 90% sample purity with Eθ2 < 0.0015
● Background reduced by ~2x compared to MINERvA

● Need uncertainty on νe CCQE extrapolation from mid-
Eθ2 sideband reduced by ~2x compared to MINERvA 
to get background uncertainty < 0.5%
● Doable with improved models for 2p2h, etc.

● If detector is magnetized, NC π0 should be negligible
● For 1% total systematic, need uncertainty on efficiency 

< 0.6%



Chris Marshall - ND workshop26

Energy vs. angle
● Lines of constant 

neutrino energy
● Beam angle smearing 

only – perfect detector
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Acceptance
● Column-

normalized to 
unity

● Very forward for 
Eν > 2 GeV

● Down to 1 GeV 
muon angle goes 
up to ~45 
degrees
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Detector effects

● Used fast MC to study these detector effects:
● Finite muon energy resolution
● Muon energy scale bias
● ν reconstruction: σ(p) = 5% for p/π, π± KE only, no neutrons 
● Add neutrons based on Geant4 LAr study

● Plot event rate / (flux prediction * high-energy cross 
section * S)

● Takes out all cross section effects – result is 1.0 for 
perfect detector 
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Hadron reconstruction
● For cut on reco ν < 0.1 

GeV, true ν 
distributions for 
different assumptions

● Red loses all neutron 
energy

● Blue keeps energy 
based on previous slide
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Muon kinematics

● To first order, for low-ν sample, reco Eν ≈ Eμ

● Could you reject high-energy neutrons with missing pT?
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Muon kinematics

● Could reject events with muon pT above ~0.7 GeV, but 
that would only reject ~20% of events with missed 
neutrons and true ν ~ 0.5 GeV
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Low-ν fraction
● Fit every event once
● Use separate low-ν 

sample that is not used 
to constrain ν-Ar cross 
sections

● For ν < 0.1 GeV, low-ν 
sample is 5-10% of CC 
sample in DUNE flux
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