

Summary of "Lessons Learned" for the pCM

Chuck Grimm on Behalf of the Fermilab LCLS-II Team

1.3 GHz Prototype Cryomodule, F10009945 3D model

Summary of Lessons Learned on pCM

Review Summary of Lessons Learned

- WS2
 - Magnet
 - RF
 - Electrical
 - 2-Phase Welding
 - Magnetic Shielding
- WS3
 - Cavity Tuners Brief
 - Thermal Intercepts
- WS5
 - JT Valve Welding
 - Electrical
 - Coupler Warm Ends

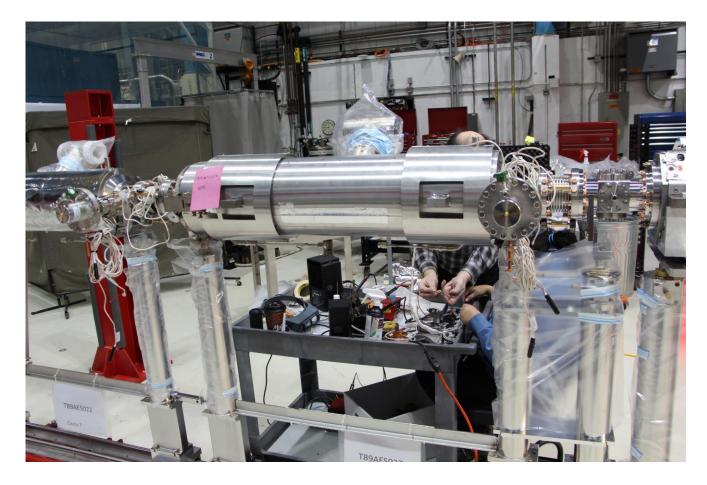
Hopefully Initiate Conversations

View at CAF-MP9

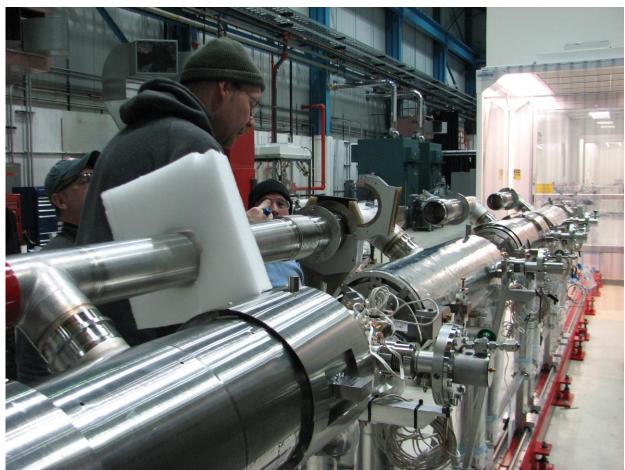
• Magnet

Magnet

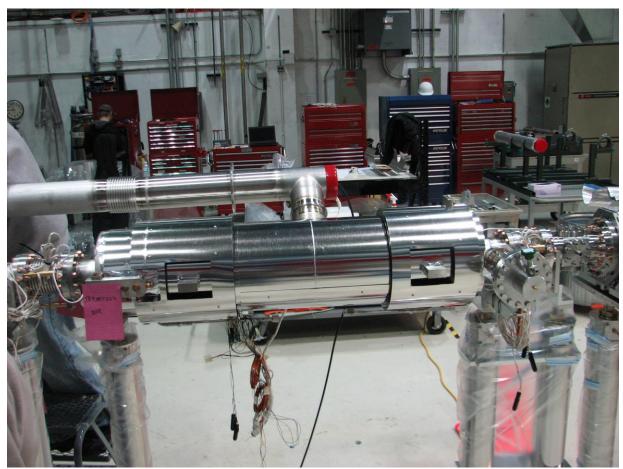
- Difficult to test magnet with long solid leads
 - Changed to softer leads
- Magnet cores had slightly different lengths
 - Sasha: "end adjacent to BPM flange should be flattened against flange, other end "floats", that's ok."
- Soldering flags on thermal intercepts a lengthy process
 - Work moved to WS3
 - Wires were pre-tinned to speed up soldering process
 - 55K flags delivered to WS3 preassembled
 - 2 Tech trained to perform soldering work
 - Propose to have instrumentation group learn magnet soldering


• RF

• RF


- RF measurements should be taken as soon as the string is rolled out of the cleanroom
 - Frequency last checked at VTS and no known issues after
 - Frequency needs to be checked and possibly retuned after HTS test
 - Frequency and field flatness can be inadvertently modified when the tuner or the bellow restraints are removed/installed
- Equipment ID's should be recorded in RF travelers
- The HOM notch frequency measurements
 - Tool was modified due to the crowded nature of the tuner "short" endgroups
 - Notch tuner tool increased to 3 sets
- More network analyzers would help to keep production on schedule
 - However cost prohibitive
 - Analyzers will be moved wherever needed to prevent bottlenecks

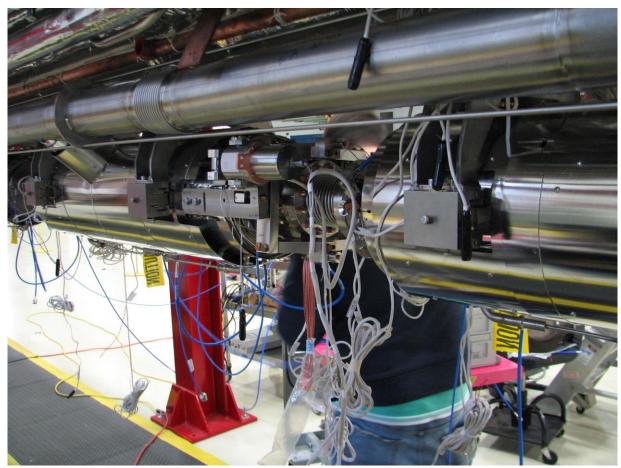
• Electrical


- Electrical
 - Part kit lists needed to be finalized, parts should be handled like all other parts (i.e. inventoried, kit lists, etc.)
 - Instrumentation group to generate spreadsheets for all work
 - These will be uploaded into the traveler
 - Storage of equipment and tools
 - Require space at MP9 and ICB for cart equipment and cabinets for storing parts
 - All leads, sensors, and cables need to be capped, grounded, or shorted after installation
 - Required before any welding can be performed
 - Communication between welding and instrumentation groups essential
 - Steps were added to travelers to assure flux is cleaned from soldered wire connections

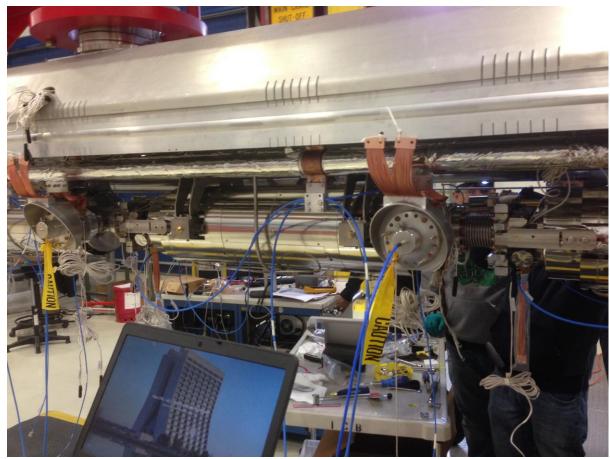
• 2-Phase Welding

- 2-Phase circuit welding
 - Second orbital head was purchased
 - Commissioned prior to use on the pCM and currently being used
 - Older head stored as "back-up"
 - Warm-up/cool-down lines changed from butt weld to weld sockets
 - Reduces the chances of closure of small line or reducing inner diameter
 - Capillary lines from liquid level manifold to warm-up/cool-down lines removed from production assembly as separate parts
 - Interference with Iollipop stands and magnet tooling, cut from pCM UCM and re-welded after UCM mating to cavity string and raised from Iollipops
 - There are 8 common sub-assemblies for 2-phase line construction
 - Parts were welded on the bench ahead of time
 - Sub-assemblies kit made for all CM's and added to part inventory
 - Significantly decreases 2-phase line construction
 - Welders are qualified for 2-phase pipe welding either with the orbital welder or manually
 - Cavity vertical alignment in the cleanroom needs to be improved to minimize steps between adjacent cavities

Magnetic Shielding



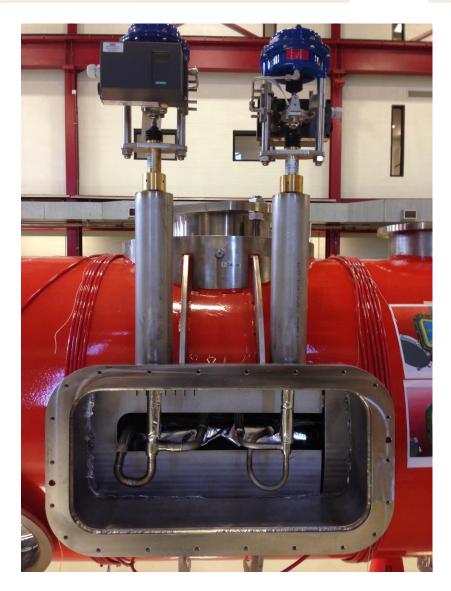
- Magnetic shielding
 - Many design changes have been implemented
 - Virtually all were due to interference issues
 - All duel layer He tank shields added except for 2nd layer center section opposite the 2-phase line
 - Extra space made available for warm-up/cool-down line welding
 - Clearance holes for shield screws changed to slots for easier assembly


View at CAF-ICB

Cavity Tuners

- Cavity Tuners
 - Tuner motor tests
 - Bench tested after being pulled from stock
 - Motors are shipped sealed and do not want to open until use protecting from reduced shelf life
 - Magnetic hygiene performed on tuners
 - Demagnetization for tuner being set up
 - No DR's were written on the prototype tuners
 - Notes were taken and design changes were made

• Thermal Intercepts


Thermal Intercepts

- Pipe clamp problems
 - Clamp issue resolved radii were machined vs. "bump" formed
 - Belleville washers for thermal connections will be used
- Indium used on all hard connections for thermal intercepts
 - Indium creep clamps to be retightened as part of the procedure
 - Torque values for all thermal connections added to travelers
 - Torque verification prior to traveler "sign-off"
 - Revive the calibration program for torque wrenches
- 55K intercept mount for the coupler changed to a copper block mounted directly to the 55K pipe
- Mylar shrink tube added to coupler and HOM straps
- 2-phase pipe end clamps shoulder screws added to improve sliding function

View at CAF-ICB

• JT Valve Welding

- JT Valve Welding Thermal Intercepts
 - Three closure welds subjected to x-ray
 - Due to high pressure test (~20+ bar) lines cannot be pressure tested after welding due to lines common to cavity helium circuit
 - Reduced to 2 welds for future CM's
 - Potential issue with local magnetization during welding
 - Grounding line looked at as potential culprit
 - Improved grounding locations near welds should help this problem
 - Cryomodule demagnetization using coils fixed the problem on pCM
 - Thermal shields around valve stems not added
 - One possible reason for valve icing up during CM testing
 - Added at CMTF cave during CM warm-up cycle

Electrical

- Electrical
 - Only soldering to be done at WS5 on Flange C for split quad
 - Adding voltage taps at Flange C will add time, but not much
 - All other flange assemblies will be bench built and pre-checked prior to use on cryomodules
 - Connector sub-assemblies
 - Connectors not leak checked, may save this step for assembled flanges
 - Fixture is needed for instrumentation leak checks to speed up process
 - Problem with leaking E1/L1 flange, O-ring is suspect
 - Changed at CMTF during recent warm-up problem resolved
 - Problem with the wiring hole (location) for K Flange on 55K shield
 - Resolved on future shields

• Coupler Warm Ends

• Warm Coupler Ends

- Tooling
 - Currently 2 sets of tooling for warm end installation
 - Two portable cleanrooms
 - Should be ok for production
- Additional Technicians need to be trained for warm end installation
- Goal is 2 coupler installations per day
 - Coupler and waveguide assembly work completed in 5 days
- Storage of couplers (cold and warm ends) is major issue
 - Three desiccator cabinets have been ordered
 - Possible use of desiccators in IB4 RF cleanroom?
- Bringing couplers into the inventory system
 - Warm end installation kits under development and added to traveler system
 - Two different coupler vendors, each needed slightly different hardware kits

Summary of Lessons Learned on pCM

Thank you!