
Executing code on columnar data

Jim Pivarski

Princeton – DIANA

February 8, 2017

1 / 18

Why I’m interested in columnar data

I’m working on a query language and database server to aggregate
large samples of HEP data on the fly.

Purpose: to eliminate the need for private skims in most situations.

to replace

with

Collaborating with Jin Chang and Igor Mandrichenko on the server.
2 / 18

Why I’m interested in columnar data

The query language, Femtocode, plays a similar role as TTreeFormula:

I a high-level language for the physicist

I usually for filling a histogram (so query responses are small)

I but generally useful for transforming one dataset into another.

However, it’s a full-fledged language with assignments and
user-defined functions, so that it can encompass a larger part of
the data analysis.

(I’ve examined SQL, LINQ, and others, and they are not sufficient.
I would use a standard if I could. Femtocode BNF has > 50%
overlap with Python BNF.)

3 / 18

Why I’m interested in columnar data

The essential feature of Femtocode is that it can compile complex
structure-manipulations, which would ordinarily have to be
performed in object-oriented code, into a series of vectorized
kernels.

It operates on columns.

4 / 18

Data reduction without objects

Example:

hist = dataset.bin(100, 0, 50, """
muons.map(m => sqrt(m.px**2 + m.py**2)).max()

""")

compiles to

1. Compute
√

px2 + py 2 for all
muons, ignoring event
boundaries.

2. Find the maximum such
value for each event.

3. Bin those events and fill the
histogram.

rather than

1. Loop over events:
1.1 Loop over muons:

1.1.1 Compute
√

px 2 + py 2

for each.

1.2 Fill a histogram with the
maximum.

5 / 18

Scope of computability

Three types of data transformations:

Flat: apply N-argument function to
each element of N aligned
arrays, ignoring boundaries.

a b c d e f g h i j

1 2 3 4 5 6 7 8 9 10

Explode: emulate (nested) for-loops by
replicating data in one array so
that it becomes aligned with
another array.

a b c

1 2 3 4 5 6 7 8 9 10

{ { {a a a a a b b c c c

Reduce: emulate counters, sum, mean,
max, etc. by combining elements
of an array so that it becomes
aligned with an outer level of structure.

1 2 3 4 5 6 7 8 9 10

{ { {

16 13 27

6 / 18

Flat transformations

The majority of steps in a typical calculation are flat:

double in[ZILLION];
double out[ZILLION];

for (int i = 0; i < ZILLION; i++)
out[i] = flat_operation(in[i]);

I Compilation with -O3 vectorizes if possible (depends on
flat operation).

I Easiest form for CPU to prefetch memory and/or pipeline
operations.

I Also ideal for GPU calculations.
I There is a standard for functions of this form: Numpy’s ufunc

is widely used among scientific libraries.
I Easy way for a user to add functions to the language!

7 / 18

ROOT functions can be ufuncs, too

import ctypes, numpy, numba

libMathCore = ctypes.cdll.LoadLibrary("libMathCore.so")
chi2_ctypes = libMathCore._ZN5TMath17ChisquareQuantileEdd # c++filt!
chi2_ctypes.argtypes = (ctypes.c_double, ctypes.c_double)
chi2_ctypes.restype = ctypes.c_double

compile to pure-C ufunc
@numba.vectorize(["f8(f8, f8)"], nopython=True)
def chi2_ufunc(p, ndf):

return chi2_ctypes(p, ndf)

p = numpy.random.uniform(0, 1, int(1e6)) # million random numbers
result = chi2_ufunc(p, 100) # call ufunc on all of them
3.22 seconds

import ROOT
result = [ROOT.TMath.ChisquareQuantile(pi, 100) for pi in p]
9.32 seconds

(Performance comparison is just to show that the ufunc computes ChisquareQuantile

in C, not in Python. Simpler functions show a more dramatic difference.)

8 / 18

Explode operation

Depends critically on the way we represent structure. For the
“recursive counter” method I described in the last talk,

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

Calculating arbitrary explosions is solved in two cases:

I explode scalar to fit a list’s counter (35 lines of C)

I explode list to fit another list’s counter (470 lines, recursive).

9 / 18

Explode operation

Depends critically on the way we represent structure. For the
“recursive counter” method I described in the last talk,

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

Calculating arbitrary explosions is solved in two cases:

I explode scalar to fit a list’s counter (35 lines of C)

I explode list to fit another list’s counter (470 lines, recursive).

Illustration of scalar-to-list:

xs → [1, 2, 3, 4], [], [5, 6, 7] and y → 100, 200, 300

Computing

xs.map(x => x + y)

yields

[101, 102, 103, 104], [], [305, 306, 307]

10 / 18

Explode operation

Depends critically on the way we represent structure. For the
“recursive counter” method I described in the last talk,

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

Calculating arbitrary explosions is solved in two cases:
I explode scalar to fit a list’s counter (35 lines of C)
I explode list to fit another list’s counter (470 lines, recursive).

Illustration of list-to-deeper-list:

xss → [[100, 200], [300, 400], [500, 600]] and ys → [1, 2, 3, 4]

Computing

xss.map(xs => xs.map(x => ys.map(y => x + y)))

yields

[[[101, 102, 103, 104], [201, 202, 203, 204]],
[[301, 302, 303, 304], [401, 402, 403, 404]],
[[501, 502, 503, 504], [601, 602, 603, 604]]]

11 / 18

Explode operation

Depends critically on the way we represent structure. For the
“recursive counter” method I described in the last talk,

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

Calculating arbitrary explosions is solved in two cases:
I explode scalar to fit a list’s counter (35 lines of C)
I explode list to fit another list’s counter (470 lines, recursive).

Another illustration of list-to-deeper-list:

xss → [[100, 200], [300, 400], [500, 600]] and ys → [1, 2, 3, 4]

Computing

xss.map(xs => ys.map(y => xs.map(x => x + y)))

yields

[[[101, 201], [102, 202], [103, 203], [104, 204]],
[[301, 401], [302, 402], [303, 403], [304, 404]],
[[501, 601], [502, 602], [503, 603], [504, 604]]]

12 / 18

Reduce operations

Haven’t been implemented, but they’re pretty straightforward.

13 / 18

Query server

Before finishing the language, we want to understand how it will fit
into the server.

Preliminary design:

client:
pure Python,

part of the base
Femtocode

package

dataDB:
responds to requests

for column data

metaDB:
responds to requests

for dataset descriptions,
including number of

row groups

store:
cold storage for

old results, queryable
by http and XRootD.

accumulate:
keeps track of which

row groups have been
completed and

aggregates results.

dispatch:
checks Femtocode,

finds the accumulate
that is handling the
request or has the

least load.

compute:
asks for work from

accumulate, maintains
a column cache and a

work queue

dataset sc
hema

query and
progress

big result (tables)

find
owner

progress
or result

save big
resut to

shared disk

result

ask for
work

ask for
data

dataset schema

14 / 18

Query server

If a centralized query server is going to replace private skims, it has
to respond to aggregations over whole datasets in seconds.

Purpose of early studies: determine what performance is possible.

15 / 18

Reading from a CMS MiniAOD file

File-reading rates in events/ms per process (kHz per process), with
the goal of extracting only pT .

TTree:: fast
particle #/event # branches CMSSW Draw() reader

photon 2.9 205 1.14 435 769
electron 2.5 231 1.02 417 833
muon 2.7 192 1.02 16.5 770
tau 6.3 88 1.55 244 417
jet 16.7 95 1.15 123 182
AK8 jet 1.8 95 2.10 556 1000

I CMSSW loads all branches to reconstruct particles as a C++
objects. Loading all branches just to cut on pT is wasteful.

I TTree::Draw() is more streamlined, only loads required
branches. (Low rate for muons is not understood.)

I “fast reader” is based on a code snippet Philippe prepared for me,
using some of the same techniques as TTree::Draw().

16 / 18

Repeated queries on that file

We also plan to maintain an in-memory cache of recently used
columns, on the supposition that the column-popularity distribution
is steep enough to cause frequent cache-hits among users.

Rate for simple,
flat functions on
cached columns is
limited only by
memory bandwidth.

Could reach a peak of
7 GHz on KNL or GPU.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

ra
te

 o
f m

em
or

y-
lim

ite
d

op
er

at
io

n
 o

n
64

-b
it

flo
at

s
(M

H
z)

number of processes

Tesla K20Xm GPU
Knights Landing, MCDRAM

Knights Landing, normal RAM
32-core machine, normal RAM

17 / 18

Conclusions

I I’m developing Femtocode to translate object semantics into
vectorized operations as part of a project to create a fast
query server.

I The “recursive counter” representation of nested structure
can be exploded and reduced.

I This representation is identical to ROOT’s for depth-1 lists.
I Any interest in extending to arbitrary split depth?

I Flat functions are
I quick to compute,
I extensible using Numpy’s “ufunc” standard.

I For a cached query server,
I ∼1 MHz column entries is attainable for cache-misses,
I ∼1 GHz column entries is attainable for cache-hits.

18 / 18

