
Survey of columnar file formats and the
techniques they use

Jim Pivarski

Princeton – DIANA

February 8, 2017

1 / 21

The ROOT file format is many things

I Generic: designed for any type of data.

I Key-value object store for histograms, lookup tables, etc.

I Big data storage: identically structured files with large TTrees.
(Byte for byte, this is the most common use-case!)

I Binary and schemaed (TStreamerInfo) for efficient access.

I Hierarchical data, such as events containing jets containing
tracks containing hits.

I Remotely accessible via the XRootD protocol.

I Record-oriented or columnar with a configurable splitting level.

I And now multilingual, with jsROOT, root4j, and soon go-root.

This talk will be about file formats that share and what we can
learn from them.

2 / 21

The ROOT file format is many things

I Generic: designed for any type of data.

I Key-value object store for histograms, lookup tables, etc.

I Big data storage: identically structured files with large TTrees.
(Byte for byte, this is the most common use-case!)

I Binary and schemaed (TStreamerInfo) for efficient access.

I Hierarchical data, such as events containing jets containing
tracks containing hits.

I Remotely accessible via the XRootD protocol.

I Record-oriented or columnar with a configurable splitting level.

I And now multilingual, with jsROOT, root4j, and soon go-root.

This talk will be about file formats that share these features and
what we can learn from them.

3 / 21

The ROOT file format is many things

I Generic: designed for any type of data.

I Key-value object store for histograms, lookup tables, etc.

I Big data storage: identically structured files with large TTrees.
(Byte for byte, this is the most common use-case!)

I Binary and schemaed (TStreamerInfo) for efficient access.

I Hierarchical data, such as events containing jets containing
tracks containing hits.

I Remotely accessible via the XRootD protocol.

I Record-oriented or columnar with a configurable splitting level.

I And now multilingual, with jsROOT, root4j, and soon go-root.

This talk will be about file formats that share these features and
what we can learn from them. But especially these.

4 / 21

Columnar data

Database storage formats resemble ROOT TNtuples: user usually
only touches a few database columns, so it’s important to be able
to access them without being slowed down by the others.

Example: ORC file format for Hive (Hadoop as a database). Each
data column is saved as a contiguous, equal-length array.

Generic, binary, non-columnar formats, such as ProtocolBuffers,
Thrift, and Avro, are better suited to remote procedure calls
(RPC) and streaming analytics (“live” data without storage).

5 / 21

Hierarchical data

Although SQL-99 introduced arrays and structures (nested data),
its language support is underwhelming.

(For instance, how would you pick out the px, py, pz of the top
two muons in an event and construct an invariant mass in SQL?)

ORC files store arrays and structures within a column “unsplit.” If
you want one subfield, you have to load or skip over all subfields.

Nevertheless, the industry is moving in this direction: a Google
paper (link) described a hierarchical, columnar file format, used
in-house since 2006.

This paper is the basis for Apache Parquet (file format), Apache
Arrow (in-memory data representation), SparkSQL 2.0
optimizations, Ibis, Impala, Kudu, Drill query servers, and probably
others.

6 / 21

https://research.google.com/pubs/pub36632.html

Hierarchical data

Although SQL-99 introduced arrays and structures (nested data),
its language support is underwhelming.

(For instance, how would you pick out the px, py, pz of the top
two muons in an event and construct an invariant mass in SQL?)

ORC files store arrays and structures within a column “unsplit.” If
you want one subfield, you have to load or skip over all subfields.

Nevertheless, the industry is moving in this direction: a Google
paper (link) described a hierarchical, columnar file format, used
in-house since 2006.

This paper is the basis for Apache Parquet (file format), Apache
Arrow (in-memory data representation), SparkSQL 2.0
optimizations, Ibis, Impala, Kudu, Drill query servers, and probably
others.

7 / 21

https://research.google.com/pubs/pub36632.html

They didn’t know about ROOT!

Dremel: Interactive Analysis of Web-Scale Datasets (2010)

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, Theo Vassilakis

Independently developed: this is xenobiology!
8 / 21

Translation dictionary

ROOT

I Streamer info

I Splitting

I Event cluster

I TBuffer

I TBasket

Google Dremel and Apache Parquet

I Schema: description of all data types

I Shredding: breaking objects into columns

I Row group: group of columns (which may
have different lengths) corresponding to a
fixed number of rows

I Column: contiguous data for one scalar
leaf of the schema

I Page: fixed-size chunk of data for one
compression pass

9 / 21

Repetition and definition levels

Schema of primitives that
can be repeated, required, or
optional.

All data can be flattened
with two extra fields: r and d .

10 / 21

Detail on repetition level

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Repetition level: 0 2 2 1 2 2 2 0 1 2

11 / 21

Detail on definition level

Intended for nullable data (e.g. missing values), but also required
to describe empty lists. Can’t adopt repetition levels without
definition levels.

12 / 21

Comparison to ROOT’s counters

Dremel/Parquet

I Repetition/definition levels
describe arbitrarily deep
nesting in one pair of arrays.

I Maximum possible r , d
values determined by depth
of nesting; tightly packable.
(A depth-1 list of any length
can be described by two bits
per element.)

I Determining list size is a
history-dependent
calculation.

ROOT

I A separate counter branch
would be needed for every
level of depth.

I List length is bounded by
the number of bits in the
counter.
(An 8-bit counter is more
tightly packed for lists of
length 4 through 255.)

I List size is readily available.

13 / 21

Best of both worlds

Can we keep counters but gain the ability to describe arbitrarily
deep nesting in one array? Yes!

→ Fill the counter recursively.

Given: [[a b c] [d e f g]] [[h] [i j]]
Data array: a b c d e f g h i j
Recursive counter: 2 3 4 2 1 2

I Lossless: we know to interpret the orange numbers as
first-level and the blue numbers as second-level by reading it
left to right and counting (history-dependent calculation).

I Backward compatible with ROOT’s counters.

I Data array is now completely split; we can apply vectorized
functions to it (e.g. GPU kernels) for any depth of nesting.

14 / 21

A more complex example

Consider a schema that mixes arrays and structs:

class outer {
double x;
vector<inner> y;

};
class inner {
double a;
vector<double> b;

};

#x=

y= a=#
b=[#]

...a=#
b=[#]

Data like this:

outer(x=1, y=[inner(a=2, b=[3, 4]), inner(a=5, b=[])])
outer(x=6, y=[inner(a=9, b=[10, 11])])

Only needs a counter for each leaf with different structure:

x: [1, 6]
y.a: [2, 5, 9]
y.b: [3, 4, 10, 11]

y.a@size: [2, 1]
y.b@size: [2, 2, 0, 1, 2]

15 / 21

Another trick: variable length integers

Unsigned

Only use as many bytes as necessary for
each individual integer (like UTF-8).

number serialization
0 00
1 01

127 7f
128 80 01
129 81 01

16,383 ff 7f
16,384 80 80 01
16,385 81 80 01

Signed

Same trick as unsigned, but
first transform so negative
values near zero are short
byte patterns.

number transformed
−0 0
−1 1
−1 2
−2 3
−2 4

I Simplifies encoding: same code for char, short, int, and long.
I Smaller file sizes. (Inserts the assumption that small integers

are common, rather than making the compression algorithm
discover that.)

16 / 21

Another consideration: abstract schemas

I ROOT’s streamer info describes C++ objects. Hard to
translate into objects in other languages (e.g. root4j).

I Many new schema systems are language-agnostic. They define
types like “string,” “integer,” “record,” and “list,” which
might be represented in different ways in different languages.

I Parquet further distinguishes between “physical schema” (just
enough information to encode/decode) and “logical schema”
(more detail about how to represent for analysis).

physical logical

integer enumeration
list of pairs hash table

I Scientific Python community is developing a standard called
Datashape (link) with C++ friendly features, including
records, fixed and variable length arrays, and pointers.

17 / 21

http://datashape.readthedocs.io/en/latest/overview.html

Another consideration: abstract schemas

I ROOT’s streamer info describes C++ objects. Hard to
translate into objects in other languages (e.g. root4j).

I Many new schema systems are language-agnostic. They define
types like “string,” “integer,” “record,” and “list,” which
might be represented in different ways in different languages.

I Parquet further distinguishes between “physical schema” (just
enough information to encode/decode) and “logical schema”
(more detail about how to represent for analysis).

physical logical

integer enumeration
list of pairs hash table

I Scientific Python community is developing a standard called
Datashape (link) with C++ friendly features, including
records, fixed and variable length arrays, and pointers.

18 / 21

http://datashape.readthedocs.io/en/latest/overview.html

Another consideration: abstract schemas

I ROOT’s streamer info describes C++ objects. Hard to
translate into objects in other languages (e.g. root4j).

I Many new schema systems are language-agnostic. They define
types like “string,” “integer,” “record,” and “list,” which
might be represented in different ways in different languages.

I Parquet further distinguishes between “physical schema” (just
enough information to encode/decode) and “logical schema”
(more detail about how to represent for analysis).

physical logical

integer enumeration
list of pairs hash table

I Scientific Python community is developing a standard called
Datashape (link) with C++ friendly features, including
records, fixed and variable length arrays, and pointers.

19 / 21

http://datashape.readthedocs.io/en/latest/overview.html

Another consideration: abstract schemas

I ROOT’s streamer info describes C++ objects. Hard to
translate into objects in other languages (e.g. root4j).

I Many new schema systems are language-agnostic. They define
types like “string,” “integer,” “record,” and “list,” which
might be represented in different ways in different languages.

I Parquet further distinguishes between “physical schema” (just
enough information to encode/decode) and “logical schema”
(more detail about how to represent for analysis).

physical logical

integer enumeration
list of pairs hash table

I Scientific Python community is developing a standard called
Datashape (link) with C++ friendly features, including
records, fixed and variable length arrays, and pointers.

20 / 21

http://datashape.readthedocs.io/en/latest/overview.html

Conclusions

With this talk, I mostly wanted to let you know what other
developers are doing to solve similar problems.

If any of these could be construed as requests or recommendations,
I’d like to find out if there’s interest in using recursive counters to
split data structures down to all levels of depth.

I’ll have more to say about that in my next talk.

21 / 21

