Dune 10kt dual phase muon reconstruction efficiency studies

Christoph Alt

January 16th, 2017 / ProtoDUNE reconstruction meeting

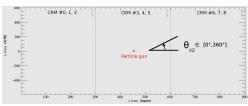
Introduction

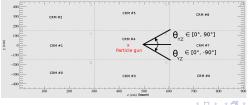
Motivation: validate the implementation of the 10kt dual phase in LArSoft by checking the muon reco efficiencily as a first step

Content:

- 1. Dual phase geometry and efficiency definition
- 2. Muon reco efficiency for isotropic muons & 'stitching'
- 3. Muon reco efficiency vs. muon direction
- 4. Conclusion and outlook

LArSoft config for simulation and reconstruction:

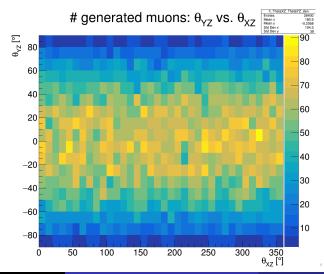

- standard 10kt dual phase .fcl's, including:
- Hits: 'GausHitFinder'
- Cluster: 'linecluster'
- Tracks: 'pmtrack'


Dual phase (workspace) geometry

- 9 CRMs of 3x3 meters / 960x960 channels each
- Maximum drift: 12 meters

Side view

Top view (anode view)


Efficiency definition

- **Completeness**: energy fraction of the simulated muon that is in a reconstructed track
- Purity: energy fraction in a reconstructed track that comes from the simulated muon
- Reconstructed muon tracks: largest energy contribution of these tracks come from the simulated muon
- Leading muon track: Muon track with highest Completeness
- Efficiency criteria (for leading muon track)
 - 1. Completeness $\geq 50 \%$
 - 2. Purity \geq 50 %
 - 3. $75\% \leqslant \frac{L_{reco}}{L_{truth}} \leqslant 125\%$

Isotropic muons: data set

- \bullet 28400 μ^- , $P_{\mu^-}=$ 500 MeV, stopping inside
- ullet Low statistics for large $\mid heta_{YZ} \mid$

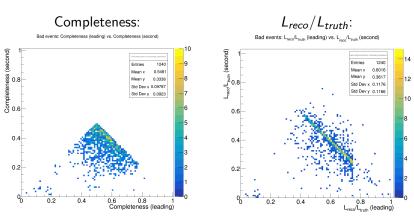
Isotropic muons: result

Efficiency: 93 % (26410/28400)

	# events	% total
Total events	28400	100 %
Good events	26410	93 %
Bad events	1990	7 %
No (muon) track	515	1.8 %
$L_{reco}/L_{truth} < 75\%$	1419	5 %
Completeness < 50 %	579	2 %
$L_{reco}/L_{truth} > 125\%$	13	0.05 %
Purity < 50 %	6	0.02 %

 \bullet Focus on bad events that have a muon track (7 % - 1.8 % = 5.2 %)

Isotropic muons: stitching

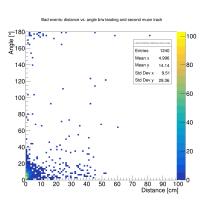

 pmtrack splits muon into two (ore more) muon tracks if there is a kink in the truth track

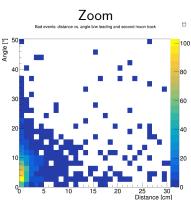
# muon tracks	good events (93 %)	bad events (7 %)
0	0 %	25.9 %
1	75.8 %	11.8 %
2	21.8 %	48.3 %
3	2.2 %	13.2 %
≥4	0.2 %	0.8 %

- Solution for bad events: choose second muon track (muon track with second highest Completeness)
- \rightarrow Add up leading + second muon track ('stitching')

Isotropic muons: stitching

Leading muon track vs. second muon track (bad events):



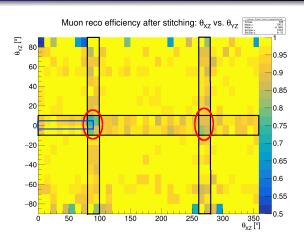

- ullet Completeness: leading + second $\simeq 1$
- L_{reco}/L_{truth} : leading + second $\simeq 1$

Isotropic muons: stitching

3D distance vs. 3D angle b/w closest endpoints of leading and second muon track (bad events):

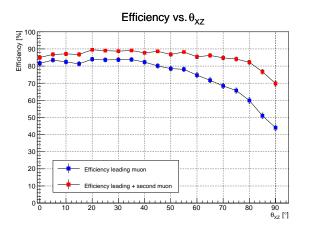
- Most events have small angle and distance b/w the two tracks
- Cluster at large angles due to $\sim\!180\,^\circ$ kinks in the reco at the end of one track (not understood)

Isotropic muons: results after stitching


leading muon track \rightarrow leading + second muon track

	# events	% total
Total events	28400	100 %
Good events	26410 → 27596	93 % → 97.2 %
Bad events	1990 → <mark>804</mark>	$7\% \rightarrow 2.8\%$
No (muon) track	515 → 515	$1.8\%\rightarrow1.8\%$
$L_{reco}/L_{truth} < 75\%$	1419 → <mark>260</mark>	$5\%\rightarrow0.9\%$
Completeness < 50 %	579 → <mark>226</mark>	$2\% \rightarrow 0.8\%$
$L_{reco}/L_{truth} > 125\%$	13 → 16	0.05% o 0.06%
Purity < 50 %	6 → 6	0.02% o 0.02%

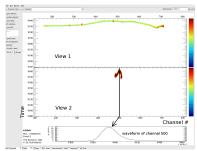
- Stitching increases efficiency by 4.2 %
- 94 % of the 804 bad events left after stitching have 0 or only
 1 muon track → can not be recovered with stitching



Isotropic muons: efficiency map after stitching

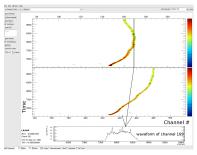
- Large errors for large θ_{YZ} (due to low statistics)
- black boxes: muon crosses only a few wires in one view
- red circles: muon along drift direction
- Focus on blue box: $\theta_{YZ} = 0^{\circ}$, $0^{\circ} \leqslant \theta_{XZ} \leqslant 90^{\circ}$

Efficiency vs. muon direction ($\theta_{YZ} = 0^{\circ}$)


- Each dot: 1000 μ^- with $P_{\mu^-}=500\,\mathrm{MeV}$ $\sigma_{\mu^-}=\sqrt{\varepsilon\cdot(1-\varepsilon)/1000}$
- ullet Track splitting increased & lower efficiency for $heta_{XZ} o 90^{\,\circ}$
- Pick two example events: $\theta_{XZ} = 0^{\circ}$ and $\theta_{XZ} = 90^{\circ}$

Efficiency vs. muon direction

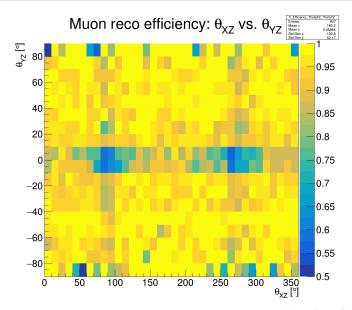
Example events (raw data):


$$heta_{YZ}=0^\circ$$
 , $heta_{XZ}=0^\circ$

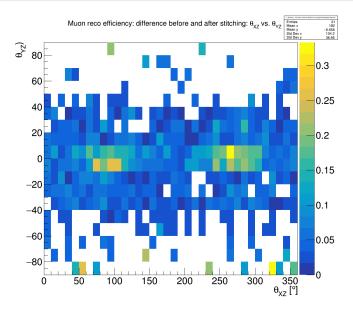
- isochronous
- muon crosses only a few wires in view 2
- ightarrow problem for track reco

$$heta_{YZ}=0^\circ$$
 , $heta_{XZ}=90^\circ$

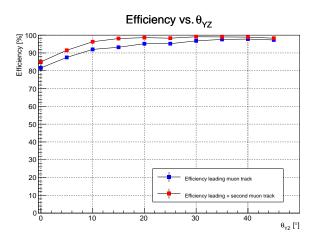
- not isochronous
- muon crosses only a few wires in both views
- → problem for hit finding


Conclusion and outlook

- Efficiency for isotropic muons: 97.2 % (close to 100 % for non-problematic directions)
- Problematic directions: along a few wires in one view (problem: track reco) & along drift direction (problem: hit finding)
- ightarrow start working on hit finding in dual phase


Thanks for your attention!

Backup slides


Isotropic muons: efficiency map for leading muon track

Isotropic muons: Δ efficiency before and after stitching

Efficiency vs. muon direction ($\theta_{XZ} = 0^{\circ}$)

- Each dot: 1000 μ^- with $P_{\mu^-}=500\,{
 m MeV}$ $\sigma_{\mu^-}=\sqrt{\varepsilon\cdot(1-\varepsilon)/1000}$
- \bullet Track splitting decreased & higher efficiency for $\theta_{YZ} \rightarrow 45\,^\circ$