
In-Time filtering 
updates, and ideas on 
mixing modules in 
simulation and LArG4 
restructuring
Wesley Ketchum

17 January 2017



Working on improvements for in-time 
cosmic generation
¡ Current problem: simulation is very inefficient and not robust
¡ CORSIKA takes long time to produce events (~7 s in uboone)
¡ Filter to select events with particles within very short time window à miss a 

lot of slightly later light
¡ For a trigger, it’s the light not the particles that matter…

¡ LArG4 takes a while to run over full event
¡ Which is why the above filter is tighter than it should be

¡ We’re working out way to try to speed this up, and this involves some 
code changes
¡ Also, going to talk about workflow and use of existing modules, as that’s 

maybe helpful to people

17 January 2017

2



Step 1: Speeding up CORSIKA
¡ Matt Bass and I discovered bulk of CORSIKA time taken up in reading database 

entries for showers/particles in showers

¡ And … bulk of entries in shower databases have no particles
¡ They don’t point to TPC and will never lead to detectable particles
¡ There to get normalization right, basically

¡ Matt Bass made DB entries with null showers removed à 50x faster

¡ Problem now: way of doing it now not random enough
¡ Computes n_showers based on flux and time period and always pulls same number of 

showers for each event

¡ Proposed: add Poisson fluctuations on number of showers using RNS
¡ Feedback: should this be an option? On by default?

¡ We are still validating n_particles looks ok
¡ But n_showers in generation looks great

17 January 2017

3



Filtering updates
¡ FilterGenInTime_module currently rejects/accepts events based on 

presence of particle in specified time range

¡ Proposed: options for sorting particles into separate collections 
by time
¡ SortParticles switch
¡ Defaults false
¡ If true, produce two MCTruth collections with instance labels “intime” and 

“outtime”
¡ AlwaysPass switch
¡ Default false
¡ If true, always pass the event (useful if you only want to sort)

17 January 2017

4



Then, using existing utilities
¡ More efficient in-time simulation possible:
¡ Run G4 only over the “intime” collection
¡ InputLabels option to select specific MCTruth collection
¡ Recall, LArG4 by default uses ALL MCTruth collections

¡ Run FilterSimPhotonTime_module to determine if photons hit OpDets in 
chosen time window

¡ IF pass, run G4 only over the “outtime” collection
¡ Run MergSimSources_module to merge intime G4 and outtimeG4 

collections

17 January 2017

5



MicroBooNE flow as example
¡ Still doing final studies, but as example:
¡ Run CORSIKA (~0.15 s per event)
¡ Run FilterGenInTime with “intime” as ~10 us before start of trigger period
¡ Pass rate ~25%

¡ Run G4 over “intime” collection (~10 s per event)
¡ Run FilterSimPhotonTime for 1.6 us over trigger period
¡ Pass rate ~20%

¡ Run G4 over “outtime” collection (~100 s per event)
¡ Run MergeSimSources over G4 collections
¡ Drop the separate G4 collections from file

¡ These are all available in LArSoft à you can do this or something 
similar
¡ You need to do your own optimizations, of course

17 January 2017

6



Q’s for other experiments and 
what to merge
¡ Opinions/questions on Poisson fluctuations for CORSIKA generation?
¡ Currently, this would be a change to way things are done

¡ Opinions/counterproposals for sorting option in FilterGenInTime?
¡ Currently, default à same behavior

¡ larsim/feature/wketchum_InTimeCosmic to be merged

17 January 2017

7



Thinking ahead
¡ Rethinking simulation, and how to better optimize

¡ Significant amount of time spent in G4

¡ G4 often needs rerunning
¡ Any change in lifetime, E-field, space charge/spatial distortions, diffusion, 

etc.
¡ Core issue: these items have more to do with drifting and simulation of 

detector conditions, not G4 physics/material interactions
¡ Potential to speed-up on-demand processing time by pre-processing 

interactions through G4, and mixing interactions together over some time 
distribution
¡ Use art mixing modules
¡ Requires stable geometry and B-field

17 January 2017

8



How I’d envision this working
¡ Change in output of LArG4
¡ Currently SimChannels and SimPhotons are electrons/photons at the 

detecting devices
¡ Switch to store energy depositions in the LAr (3D space, time, energy)
¡ Associated to parent MCParticle

¡ “Mixing” module
¡ Read in LArG4 outputs from different classes of interaction
¡ Use art mixing modules à randomized access from file/SAM dataset
¡ Distribute interactions/energy depositions in time as desired
¡ Neutrinos and dirt/rock interactions distributed according to beam 

timing
¡ Cosmics random over time window
¡ In-time cosmics: force one to be in desired time!

¡ Output: complete list of time-distributed particles and energy depositions

17 January 2017

9



How this could work, part 2
¡ Ionization/Scintillation module
¡ Input: energy depositions
¡ Output: n_electrons and n_photons produced at that point in space

¡ Electron drifting module
¡ Input: n_electrons at point in space
¡ Output: SimChannels or RawDigits
¡ Apply space charge effects, diffusion, and drifting time, and E-field at 

wires

¡ Photon propagation module
¡ Input: n_photons
¡ Output: SimPhotons
¡ Do photon lookup library or photon propagation simulation

17 January 2017

10



Notes on that
¡ All of that except mixing module(s) is restructuring of existing code

¡ Should go hand-in-hand with other LArG4 work

¡ Want ability to include photon propagation as part of G4 jobs
¡ à See SimPhoton distribution, and allow you to apply filter on events or find 

times when filter would pass

¡ Modules need not produce saved output at each stage
¡ Provide options for dropping n_electrons/n_photons or other intermediate 

outputs as you go through event

¡ This would imply rethinking BackTracker modules
¡ Still want to store Sim::IDEs as part of SimChannel? Or do contributions 

through associations?
¡ Rethink of structure here
¡ Continue to keep in mind non-wire SimChannels

17 January 2017

11



End goals of this
¡ Ability to generate more complete set of reusable G4 interactions in 

<2 GB memory
¡ Less filtering on particles likely to be detectable
¡ Make maximum use of computing resources for generating interaction 

libraries
¡ Allow movement in time

¡ Provide faster turnaround on simulation samples
¡ Allow easier modifications to space charge, lifetime, other detector 

conditions
¡ Allow alternative recombination models without needing to rerun G4
¡ Avoid lock-in to event composition and fluxes

¡ Needs to be proven, but seems realizable in short term

17 January 2017

12



Discussion…

17 January 2017

13


