Accelerator Neutrino Neutron Interaction Experiment (ANNIE)

QUICK SUMMARY, STATUS, AND NEXT STEPS

Matt Wetstein lowa State University

What is ANNIE

- An Active experimental effort at Fermilab
- ▶ Will measure the final state neutron multiplicity of neutrino interactions in relation to lepton kinematics, reconstructed energy, and q².
- A detector R&D effort first implementation of fast photodectors (LAPPDs) and waveform sampling electronics in a Gd-loaded Water Cherenkov

What is ANNIE

Construction of tank and Infrastructure (complete)

Construction of tank and Infrastructure (complete)

- Construction of tank and Infrastructure (complete)
- Phase I: Measurement of Background Neutrons (in progress)

- Construction of tank and Infrastructure (complete)
- Phase I: Measurement of Background Neutrons (in progress)

Neutron source

Beam

- Construction of tank and Infrastructure (done)
- Phase I: Background Neutron Measurement (in progress)
 - Phase IB: Procurement, LAPPD testing and readiness, PSEC electronics integration (funded by DOE and in progress)

- Construction of tank and Infrastructure (done)
- Phase I: Background Neutron Measurement (in progress)
 - Phase IB: Procurement, LAPPD testing and readiness, PSEC electronics integration (funded by DOE and in progress)
- Phase II: Physics Upgrade (Summer/Fall 2017)
 - ► Add LAPPDs, Gd, more PMTs, more electronics channels

ANNIE Physics

- Is the presence of neutrons a good handle for rejecting inelastics the fake CCQE?
 - Can we experimentally observe a hardening of the reconstructed energy distribution in ANNIE
- What is the relationship between neutron abundance and muon kinematics in CCQE-like events?
- What is the relationship between neutron abundance among other event classes (NC, events with observed pions, etc)?

Characterization of CCQE Backgrounds in Genie MC

INCREASING THE FIDELITY OF RECONSTRUCTED NEUTRINO ENERGY

Carlos Blanco, University of Chicago

Work with Dr. Richard Hill, Dr. Matt Wetstein

CCQE-Like Events: Generator level vs Detector Level

- General Criteria: No; Pions, Kaons, Gammas, Etc...) in the "final" state
- Generator Level: "Final" state is particles after intranuclear scattering (i.e. after being sufficiently far away from vertex)
- Detector Level: "Final" state is particles likely to be detected after taking into account:
 - Cherenkov thresholds
 - Secondary neutron production
 - Neutron detection efficiency

Reconstructing Energy

Presupposing elastic scattering off a nucleon.

 M_n = mass of neutron ΔM = nucleon mass difference E_B = constant nuclear removal energy E_μ = energy of outgoing muon Θ_μ = angle off longitudinal axis of muon

$$E_{\nu}^{\text{rec}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_n E_B + m_{\mu}^2 + \Delta M^2)}{2\left[M_n - E_B - E_{\mu} + |\vec{k}_{\mu}|\cos\theta_{\mu}\right]}$$

Reconstructed Energy in GENIE

200K 1 GeV neutrinos on water target

Only CCQE-like Events analyzed -Generator Level

MEC and other non-CCQE backgrounds, tend to smear and bias E_{rec} downward

Reconstructed Energy in GENIE

MEC and other non-CCQE backgrounds, tend to smear and bias E_{rec} downward

Nucleon Multiplicity of Reactions

Inclusive sample

True CCQE sample

MEC sample

Truth-level CCQE sample peaked at 1 nucleon
MEC sample peaked at 2 nucleons

What about the other backgrounds (previous red curve)?

- *This includes*
- -Resonant single pion production
- -Deep inelastic scattering

*GENIE creates n-p:n-n = 4:1 in MEC events @1 GeV

Reabsorbed pions produce neutrons most of the time...

Reaction 70

Reaction 71

-These constitute most of the inelastic non-MEC background

$$\nu_{\mu} \, p \to \mu^{-} \, p \, \pi^{+}, \quad \overline{\nu}_{\mu} \, p \to \mu^{+} \, p \, \pi^{-}$$
 (70)

$$\nu_{\mu} \, n \to \mu^{-} \, p \, \pi^{0}, \quad \overline{\nu}_{\mu} \, p \to \mu^{+} \, n \, \pi^{0}$$
 (71)

$$\nu_{\mu} \, n \to \mu^{-} \, n \, \pi^{+}, \quad \overline{\nu}_{\mu} \, n \to \mu^{+} \, n \, \pi^{-}$$
 (72)

-Genie produces at least 3 nucleons in SPP events: one from initial reaction & two from pion absorption

-Two nucleons from pion absorbtion are due to P-conservation

*Only neutrino modes are considered

Neutron Multiplicity in Backgrounds and Signal

Interaction Fraction	Inclusive	0 Neutron Sample	1 Neutron Sample	More Than 1 Neutron Sample
Truth-level CCQE	67.80%	91.99%	46.65%	37.29%
MEC	20.45%	4.44%	37.37%	37.44%
Single Pion Prod.	10.12%	3.13%	14.15%	21.22%
Deep Inelastic Sc.	1.47%	0.23%	1.74%	3.89%
Misc. Final State Int.	0.16%	0.21%	0.09%	0.16%
Total Breakdown	100%	100%	100%	100%

Event samples are broken up into classes of neutron multiplicity in the final state. O neutron sample is dominated by true-CCQE events

Interaction Fraction	0 Neutron Sample	1 Neutron Sample	More Than 1 Neutron Sample	Total Breakdown
True-level CCQE	69.57%	17.94%	12.49%	100%
MEC	10.84%	47.61%	41.55%	100%
Single Pion Prod.	15.87%	36.48%	47.65%	100%
Deep Inelastic Sc.	8.12%	31.12%	60.76%	100%
Misc. Final State Int.	62.35%	15.29%	22.35%	100%

Event samples are broken up into classes of reaction type. True-CCQE is dominated by events with 0 final state neutrons. MEC events are dominated by events with 1 or more final state neutrons.

Using Neutrons to improve E_{rec}

inclusive

1 GeV

0 Neutrons

>0 Neutrons

Rejecting events with neutrons provides a purer CCQE sample and reduces the downward bias on energy. Most of the improvement comes from rejecting stuck pions

Using Neutrons to improve E_{rec}

One or More Neutrons

Rejecting events with neutrons provides a purer CCQE sample and reduces the downward bias on energy. Most of the improvement comes from rejecting stuck pions

1 GeV

GENIE MC: Modeling Neutrino events in ANNIE

- ▶ Latest release (as of Aug., 2016) of GENIE-MC: V2.10.6
- ► Flux: Booster neutrino beam
- Geometry: File designed for the ANNIE detector in SciBoone Hall.
- Exposure: 4.73 x 10²⁰ POTS
- Using CCMEC-Flag
- ► NP:NN Ratios generated: (2,4,6,8,10):1

GENIE MC: Modeling Neutrino events in ANNIE

- ▶ Latest release (as of Aug., 2016) of GENIE-MC: V2.10.6
- Flux: Booster neutrino beam in Neutrino Mode.
- Geometry: File designed for the ANNIE detector in SciBoone Hall.
- Exposure: 4.73 x 10²⁰ POTS
- Using CCMEC-Flag
- ► NP:NN Ratios generated: (2,4,6,8,10):1

Paired-Mean Statistical Analysis

- Conduct 1000 "pseudo-experiments"; N=1000
 - ► Each experiment consisting of (n) events: n = 10%, 1%, 0.1% of 10^{20} POTS Data set. ~ $n \approx 80$ K, 8K, 800.
 - Run CCQE-like selection and energy reconstruction
 - ► Calculate average neutrino energy for N_{neutrons} = 0 and N_{neutron} > 0
 - Compare results using pairwise-mean strategy.

Red: N > 0, Green = 0, Blue = Inclusive

np:nn = 4:1 n = ~ 80 K, Statistical significant at $\sim 99\%$

Red: N > 0, Green = 0, Blue = Inclusive

▶ np:nn = 4:1 n = \sim 8K, Statistical significant at >99%

Red: N > 0, Green = 0, Blue = Inclusive

- ▶ np:nn = 4:1 n = ~800, only statistical significant at ~90%
- Alpha=0.05 Cutoff at around n = \sim 1600 (i.e. 9x10¹⁷ POTS)

Red: N > 0, Green = 0, Blue = Inclusive

- ▶ np:nn = 10:1 n = \sim 80K, statistical significant > 99%
- ▶ Thus, increased energy reconstruction fidelity is possible across large range of MEC ratios!

Tentative Conclusions

- Neutrino truth-level CCQE events are peaked at 0 final state neutrons
- Single pion production, deep inelastic scattering, and MEC are peaked at 1 or more final state neutrons
- Neutron tagging is most effective on stuck pion backgrounds
 - which typically produce neutrons and
 - have the largest biasing effect on the reconstructed energy distribution.
- ANNIE should be able to observe and demonstrate this effect with statistical significance

Open Questions and Potential Next Steps

- What impact does the n-p:n-n pair ration have on the analysis?
 - Can we potentially discriminate MEC ratios?
- What impact does the nuclear model have on the analysis?
- NEXT STEPS
 - Detector-level analysis
 - NP:NN pair analysis

Nucleon Multiplicity of Minor Backgrounds

Sample of Deep inelastic scattering and other processes with nuance code = 0.

Deep inelastic scattering and other minor inelastic processes make up ~10% of background and are beyond the scope of this study for now. However, they are observed to be peaked at 3 nucleons.

These constitute the remaining inelastic, non-MEC backgrounds observed.

Booster Neutrino Beam Flux

