

Introduction for the Electrostatic Septa for Mu2e Design

V. Nagaslaev ESS Engineering Review, January 18, 2017

Content for the discussions

- About the review process
- Introduction
 - Mu2e Experiment
 - Beam Delivery for Mu2e
 - Slow Extraction

The Mu2e Experiment

Direct conversion of muons into electrons in the field of nucleus

- Improved sensitivity by ~4 orders of magnitude
- Great potential to discover new physics
- Expect to start taking data in 2021-2022
- CD3c in June 2016
- Transitioning to the fabrication phase

Pulsed beam time structure

This beam structure can be realized with slow extraction from a machine with circulating narrow bunches, separated by ~1700nsec.

Mu2e Proton Delivery

- Two Booster "batches" are injected into the Recycler (8 GeV storage ring). Each is:
 - 4x10¹² protons
 - 1.7 µsec long
- These are divided into 8 bunches of 10¹² each
- The bunches are extracted one at a time to the Delivery Ring
 - Period = 1.7 μsec
- As the bunch circulates, it is resonantly extracted to produce the desired beam structure.
 - Bunches of ~3x10⁷ protons each
 - Separated by 1.7 µsec

Machine cycles

Full cycle in the Main Injector (1.33sec) is used to serve the neutrino experiments

12/20 of the cycle Booster and RR supply protons for the Main Injector

8/20 of the cycle can be used for muon physics

Beam intensity in the Recycler during 8/20 of the cycle

Beam intensity in the Delivery Ring during 8/20 of the cycle

Slow (Resonant) Extraction Design

- 3rd Order Resonance Extraction
- DR to be augmented for 3rd order resonance:
 - Operation point moved to 2/3
 - > 2 circuits of sextupole magnets
 - Squeeze by ramped quads circuit
 - > Dynamic orbit control in extraction region
 - Spill Monitoring
 - Spill regulation by RF Knock-Out system
 - Electrostatic septa based on thin foils
- Cost effective:
 - Minimal changes to the legacy Debuncher lattice

Beam parameters

Parameter	Value	Units
Beam kinetic energy	8.0	GeV
MI Cycle time	1.333	sec
Number of spills per MI cycle	8	
Number of protons per micro-pulse	3.9×10 ⁷	protons
Maximum DR Beam Intensity	1.0×10 ¹²	protons
Average spill rate	6.0×10 ¹²	protons/sec
Duty Factor (Total Spill Time ÷ MI Cycle Length)	29	%
Duration of one spill	43	msec
Time Gap between spills	5	msec
Extraction efficiency	>98	%
Max variation of pulse intensity	±50	%

Slow Extraction for Mu2e

Remodeling the Debuncher \rightarrow Delivery Ring

- Old Injection \rightarrow Abort line
- New Injection (new beam line)
- New Extraction in SS30
- ESS
- Sextupoles:
 - 2 families in Low Disp.
 - Suppress Octupole
 harmonic
- Tune Quads
- Magnetic septa (LAM+C-mag)
- Dynamic bump
- RFKO for spill regulation
- Spill monitoring
- Spill regulation

Electrostatic Septum Specifications

Main design constraints

- Physics, beam parameters
- Beam losses
- Space available
- Available technologies
- <u>Cost</u>

Specifics of the ESS design

- 2 septa @ max beta
- Foil septum plane
- Diffuser
- 2 vessels identical
- Heavy shielding

- No remotely controlled motion inside vessels:
 - Movable vessel support
 - Bellows for decoupling
 - Adjustable field gap

ESS length specifications

Diffusor

Simulations made with sparse Mo foils

Titanium foils seem to be available Carbon foils would be ideal!

- 1. Foil plane quality (mechanical tolerance)
- 2. Foil plane and cathode alignment (motion)
- 3. High Voltage
- 4. High Vacuum

ESS Specifications document

Printouts provided

This is a friendly review, hope this will be fun for you!

