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A fixed target, e− beam LDM experiment

Beam Dump eXperiment: Light Dark Matter (LDM) direct detection in a e− beam,
fixed-target setup1
χ production

• High-energy, high-intensity e− beam impinging on a
dump

• χ particles pair-produced radiatively, trough A′ emission
χ detection
• Detector placed behind the dump, ' 20m
• Neutral-current χ scattering on atomic e− trough A′

exchange,recoil releasing visible energy
• Signal: high-energy EM shower, E > .3 GeV

Number of events scales as: N ∝ αDε
4

m4
A

LDM parameters space:
M ′A, Mχ, ε, αD
M′A ' 10÷ 1000 MeV
Mχ ' 1÷ 100 MeV

1For a comprehensive introduction: E. Izaguirre et al, Phys. Rev. D 88, 114015
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LDM production and detection

Production: Main features follows from
thin-target kinematics ∗ e− energy loss and
secondaries emission in the dump

• Thin target kinematics:

• A′ emitted with forward kinematics,
E′A ' E0

• High-energy χ beam strongly focused
along primary beam direction - allowing
a compact detector

• e− in the dump: e− loses energy by
ionization and Bremsstrahlung, χ
kinematics gets broader

Detection: χ− e− elastic scattering
• e− recoil: EM shower (O(GeV))
• Background rejection is not critical

χ

χ

Er (GeV)
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BDX vs past/current beam-dump experiments

Past e− beam-dump experiments (E137):
• Accumulated charge was limited

(E137: O(1020) EOT)
• LDM results are a re-analysis of old

data2- the experiment itself was not
optimized for this research

p beam-dump experiments
(LSND/MiniBooNE3):
• Higher beam-related backgrounds

(hadronic environment) - higher
production yield

• Complementarity:
• Experimental: different beams /

different signals
• Theoretical: leptophilic vs

leptophobic models

E137 layout

MiniBooNE LDM setup

An optimized e− beam-dump experiment can explore new territories in
the LDM space

2PRL 113, 171802 (2014)
31702.02688
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BDX experiment layout

The experiment is designed with two goals:

Producing and detecting LDM
• High-intensity e− beam, ' 1022

electrons-on-target (EOT)/year
• Medium-high energy, >10 GeV
• ' 1 m3 (1-5 tons) detector
• EM-showers detection capability

Reducing background
• Passive shielding between beam-dump and

detector to filter beam-related backgrounds
(except νs)

• Passive shielding and active vetos
surrounding the active volume to reduce and
identify cosmogenic backgrounds

• Segmented detector for background
discrimination based on event topology

• Good time resolution to perform
detector-veto coincidence
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BDX inner detector

Active volume requirement: sensitivity to
high-energy EM showers
Technology: homogeneus EM calorimeter
made with scintillation crystals and SiPM
readout
• High crystal density: maximize event yield

with compact detector
• Homogeneous solution: minimize dead-spaces

and passive materials - critical for
background rejection

• Detector segmentation implemented with
modular design - each modulus being a
matrix of crystals

• SiPM readout: reduce dead spaces between
moduli compared to traditional PMT
readout, with similar performances (+
self-calibration / low-HV / reliability)

• Time-resolution requirements: O(5 ns), to
perform a coincidence with the active-veto
system

Different options have been considered: BGO,
BSO, BaF2, CsI(Tl)

BDX detector sketch

BSO

BaF2

CsI(Tl)
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Calorimeter R&D: CsI(Tl)

A dedicated characterization campaign has been performed to measure CsI(Tl)
crystal+SiPM properties and verify they are compatible with BDX requirements

Setup:
• Cosmics-ray coincidence setup with two

plastic scintillator counters read by PMT
• Trigger given by coincidence of two

PMTs
• CsI(Tl) crystal with 25-µm, 6x6 mm2

SiPM readout. FEE as foreseen in the
final detector (custom trans-impedance
amplifier)

Results:
• Light-yield with SiPM readout :
' 1 phe / MeV / mm2 (1 µs integration
window)

• Time resolution @ 30 MeV: σT = 7 ns
Results were later confirmed with
measurements from BDX detector prototype:
CsI(Tl)+SiPM readout is the optimal choice
for the BDX experiment

σT = 7ns
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BDX calorimeter

BDX detector: state-of-the-art EM calorimeter, CsI(Tl) crystals with SiPM-based readout.
Possibility to re-use existing BaBar CsI(Tl) crystals (informal agreement already discussed)
Detector design:
• ' 800 CsI(Tl) crystals, total interaction

volume ' 0.5m3

• Modular detector: change front-face
dimesions and total lenght by re-arranging
crystals

Arrangement:
• 1 module: 10x10 crystals, 30-cm long. Front

face: 50x50 cm2

• 8 modules: interaction length 2.6 m
Signal:
• EM-shower, Ethr ' 300 MeV,

anti-coincidence with IV and OV
• Efficiency (conservative): O(10%) - refined

cuts on EM shower directionality can improve
this

χ-e− interaction producing an

EM shower in the calorimeter
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BDX active veto

Active veto requirements: high efficiency for
charged particles detection, hermeticity,
compactness
Technology: two layers of plastic scintillator
counters, made of different paddles, each read
by WLS fibers + SiPMs (IV) / PMTs (OV).
5-cm lead vault between two layers to shield
photons
R&D:

• Veto efficiency for charged particles measured
with cosmics-ray setup, in different positions:
ε > 99%

• On-going effort to replace light guides by slim
wavelength-shifting plastics to reduce dead
spaces and simplify mechanical supports
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BDX: experiment facility

Different e− facilities have been investigated. Requirements: high-energy
(beam focusing and larger parameters space coverage), high-EOT

SLAC - LCLS2
• Ee = 4 (8) GeV, ' 3 · 1021 EOT/y
• Pulsed beam 1 MHz: reduced

cosmogenic bg
• Infrastructure costs limited
• Possible bg from X-ray beam-line
• Time-line: ' 2020

Frascati BTF
• Ee = 1.25 GeV (upgrade), ' 3 · 1020

EOT/y
• Pulsed beam 50 Hz: no cosmogenic bg
• Minimal infrastructure cost
• 2-3 years from now

Assumes no beam bg

10−3ε2

SLAC

αD = 0.1

Mχ = 10 MeV
INFN-BTF
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BDX: experiment facility

Mainz (MESA)
• Ee = 0.15 GeV, ' 1022 − 1023

EOT/y
• Ee < Eπ , almost no beam-related

backgrounds
• CW beam (3 ns)
• Machine commissioning: 2020

Mainz (MAMI)
• Ee = 1.6 GeV, ' 1021 EOT/y
• Non-trivial logistic to place detector

after existing A1 beam-dump
JLab
• Ee = 11 GeV, ' 1022 EOT/y
• CW beam (4 ns)
• Requires new experimental hall

behind Hall-A beam-dump
• Beam is available, beam-time already

approved (Moller experiment)

MESA

6 · 10−3ε2

JLAB

JLab is the leading option for the BDX experiment
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JLab facility

Beam Dump eXperiment at Jefferson Laboratory behind Hall-A beam-dump

• Already-approved experiments with more
than 1022, 11 GeV EOT (Moller, PVDIS)

• Detailed description of dump geometry and
materials avaialable and implemented in
simulations

• Verified compatibility with the planned
experiments (Moller setup: beam rastering
and target-lenght effects are negligible)

• Detailed estimate of costs / time scale of
new experimental hall construction behind
Hall-A beam dump

Hall-A beam-dump: Aluminum plates immersed in water for cooling.
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BDX detector prototype

A small-scale protoype of the BDX detector was constructed and installed
at INFN-CT (and later moved to INFN-LNS)
Goals:
• Validate the full BDX design and technical choices
• Measure cosmogenic background in a configuration similar to the final detector

setup
• Project results to the full BDX-detector and obtain background rate estimate
• Validate MC

Prototype setup:

• 1 CsI(Tl) crystal (BaBar endcap), 2 x SiPM
readout (25 µm, 50 µm)

• Currently upgraded to 4x4 matrix of
CsI(Tl) crystals

• Inner-veto layer: plastic scintillator +
WLS-fibers/SiPM readout

• 5-cm lead layer
• External-veto layer: plastic scintillator +

PMT readout

BDX-proto at INFN-CT
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Cosmogenic backgrounds

• Cosmic background measured with the BDX
prototype at INFN-CT and at INFN-LNS,
with similar overburden as expected at JLab

• Geant4 simulations (GEMC framework) in
very good agreement with data

• The majority of cosmic muons are detected
and rejected by the two veto detectors, while
cosmic neutrons are shielded by the
overburden

• Measured anti-coincidence rate (Ethr ' 300
MeV) < 2 counts: results obtained by
conservatively extrapolating from the
lower-E, non-zero counts region, projecting to
the JLab setup (800 crystals)

Threshold Projected counts
250 MeV (57± 25)
300 MeV (4.7± 2.2)
350 MeV (0.037± 0.022)

LNS BDX test-setup

Total overburden @ LNS:
' 1050g/cm3
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Cosmogenic backgrounds

• Cosmic background measured with the BDX
prototype at INFN-CT and at INFN-LNS,
with similar overburden as expected at JLab

• Geant4 simulations (GEMC framework) in
very good agreement with data

• The majority of cosmic muons are detected
and rejected by the two veto detectors, while
cosmic neutrons are shielded by the
overburden

• Measured anti-coincidence rate (Ethr ' 300
MeV) < 2 counts: results obtained by
conservatively extrapolating from the
lower-E, non-zero counts region, projecting to
the JLab setup (800 crystals)

Threshold Projected counts
250 MeV (57± 25)
300 MeV (4.7± 2.2)
350 MeV (0.037± 0.022)
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Cosmogenic backgrounds

• Cosmic background measured with the BDX
prototype at INFN-CT and at INFN-LNS,
with similar overburden as expected at JLab

• Geant4 simulations (GEMC framework) in
very good agreement with data

• The majority of cosmic muons are detected
and rejected by the two veto detectors, while
cosmic neutrons are shielded by the
overburden

• Measured anti-coincidence rate (Ethr ' 300
MeV) < 2 counts: results obtained by
conservatively extrapolating from the
lower-E, non-zero counts region, projecting to
the JLab setup (800 crystals)

Threshold Projected counts
250 MeV (57± 25)
300 MeV (4.7± 2.2)
350 MeV (0.037± 0.022)
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Cosmogenic backgrounds

• Cosmic background measured with the BDX
prototype at INFN-CT and at INFN-LNS,
with similar overburden as expected at JLab

• Geant4 simulations (GEMC framework) in
very good agreement with data

• The majority of cosmic muons are detected
and rejected by the two veto detectors, while
cosmic neutrons are shielded by the
overburden

• Measured anti-coincidence rate (Ethr ' 300
MeV) < 2 counts: results obtained by
conservatively extrapolating from the
lower-E, non-zero counts region, projecting to
the JLab setup (800 crystals)

Threshold Projected counts
250 MeV (57± 25)
300 MeV (4.7± 2.2)
350 MeV (0.037± 0.022) Energy (MeV)
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Extrapolation

Cosmogenic background is negligible with high-energy threshold. It
will be measured on-site when beam is off 18 / 30
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Beam-related backgrounds

Beam-related backgrounds
estimated trough MC simulations
(Geant4/Fluka) Challenge: very
high EOT. Solutions:
• Sample non-zero flux as a

function of depth and propagate
to detector location (G4)

• Use biasing (Fluka)

19 / 30



Introduction Experimental setup Backgrounds Experiment reach Experiment status Conclusions

Beam-related backgrounds

Beam-related backgrounds
estimated trough MC simulations
(Geant4/Fluka) Challenge: very
high EOT. Solutions:
• Sample non-zero flux as a

function of depth and propagate
to detector location (G4)

• Use biasing (Fluka)
Muons

• High-energy muon production in
the dump dominated by the
γ → µ+µ− process
• Very good consistency between G4

and Fluka for µ production in the
dump

• On-site measurement of muons
after the Hall-A beam dump is
foreseen (see next slide)

• 6.6m iron shield (+2 m
concrete) enough to range-out
high energy muons: no particles
at the detector location
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Beam-related backgrounds

Beam-related backgrounds
estimated trough MC simulations
(Geant4/Fluka) Challenge: very
high EOT. Solutions:
• Sample non-zero flux as a

function of depth and propagate
to detector location (G4)

• Use biasing (Fluka)
Neutrinos: only particles reaching
the detector
• Spectrum mainly at low-energy,

dominated by µ+ decay / µ−
capture on nuclei

• High-energy part from in-flight
decays and prompt production
processes

Possible background contribution from νe interacting via CC in the detector,
producing a high-energy e± resulting in a EM shower
Neutrino irreducible background is the ultimate limitation for BDX.
Preliminary estimate (Ethr = 300 MeV): Nνe+νe = 10 counts for 1022 EOT
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Beam-related µ: on-site measurement
Measurement campaign to characterize the flux
of high-energy µ produced in the Hall-A beam
dump. Goal: validate MC for forward particles
production with an absolute normalization point
Setup:
• Drill hole behind beam-dump at foreseen BDX

detector location
• Insert a CsI(Tl) crystal surronded by plastic

scintillator counters, matching the beam height.
Plastic counters are segmented to provide
directional information

• Measure µ flux when 11-GeV beam is on

Hall-A dump location - today
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Beam-related µ: on-site measurement
Measurement campaign to characterize the flux
of high-energy µ produced in the Hall-A beam
dump. Goal: validate MC for forward particles
production with an absolute normalization point
Setup:
• Drill hole behind beam-dump at foreseen BDX

detector location
• Insert a CsI(Tl) crystal surronded by plastic

scintillator counters, matching the beam height.
Plastic counters are segmented to provide
directional information

• Measure µ flux when 11-GeV beam is on
Status:
• Detailed MC study performed and discussed with

JLab management (BDX-Note 2017-001)
• Detector design completed and materials procured

• Test planned in fall 2017 / spring 2018
• Time-scale: O(5 months) administrative / civil work,

1-week measurement
• Budgetary estimate: 40k$

Hall-A dump location - today
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Current dump configuration - no shielding!
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BDX@JLab: reach
BDX is an optimized beam-dump experiment that can be conclusive for some Light Dark
Matter scenarios. Obtained results will guide future second-generation experiments

The BDX sensitivity for different LDM
models has been evaluated - 1022 EOT:
• Thermal relic LDM
• Leptophilic LDM
• Leptophilic inelastic LDM

Thermal relic LDM

Leptophilic inelastic LDM

Leptophilic LDM

24 / 30



Introduction Experimental setup Backgrounds Experiment reach Experiment status Conclusions

Systematic studies

A detailed study of the experimental setup -
starting from the current configuration - has
been performed to evaluate the most
promising configuration. Sensitivity for
fermionic LDM used to evaluate stability with
respect to experimental variables.

Results:
• Very weak dependence on the

dump-detector distance
• No sizeable effect by varying the detector

footprint (with fixed active volume)
• No sizeable effect by varying the electron

energy threshold: 500 MeV vs 50 MeV

8,12,15,20,30 m
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Systematic studies

A detailed study of the experimental setup -
starting from the current configuration - has
been performed to evaluate the most
promising configuration. Sensitivity for
fermionic LDM used to evaluate stability with
respect to experimental variables.

Results:
• Very weak dependence on the

dump-detector distance
• No sizeable effect by varying the detector

footprint (with fixed active volume)
• No sizeable effect by varying the electron

energy threshold: 500 MeV vs 50 MeV

50x50x210 m3

40x40x310 m3
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Systematic studies

A detailed study of the experimental setup -
starting from the current configuration - has
been performed to evaluate the most
promising configuration. Sensitivity for
fermionic LDM used to evaluate stability with
respect to experimental variables.

Results:
• Very weak dependence on the

dump-detector distance
• No sizeable effect by varying the detector

footprint (with fixed active volume)
• No sizeable effect by varying the electron

energy threshold: 500 MeV vs 50 MeV
The BDX experimental configuration has
been fully defined and proved to be optimized
for the experiment

500 MeV

50 MeV
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BDX current status
BDX status:
• R&D activity ongoing from 2014 - LOI

presente to PAC42, with strong positive
feedback

• Full proposal presented to JLab PAC44,
approved - conditionally to MC
benchmarking with on-site measurements,
and to detector optimization

• On-site µ measurement foreseen fall 2017 /
spring 2018

• Detector optimization in progress with results
from MC simulations - validated trough BDX
prototype data: plan to give an update to
PAC45

Collaboration:
• BDX proposal signed by more than 100

researchers
• Core group working on key aspects: physics,

detector, simulations
• Connection with groups involved in similar

activities at SLAC, CERN, Mainz and LNF

From PAC44 report: The committee is excited about the physics case, and encourages the BDX
collaboration to optimize their experiment in accordance with the many comments received from the
TAC and the PAC.
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BDX foreseen activities
Detector
• Technology selected and design

defined. Active volume: CsI(Tl)
calorimeter with SiPM readout.
Active veto: plastic scintillator +
SiPM / PMT readout

• ' 1-year time-scale to assembly
detector: refurbish 800 BaBar
crystals, mount calorimeter, mount
active-veto

• ' 1.5M$ total cost for full BDX
detector construction

Civil construction
• Detailed costs / time-scale

evaluation in collaboration with JLab
facility office: ' 1.5M$, ' 2-years
time-scale for construction

Within 2 years (detector assembly + civil work), BDX can be ready to run at
JLab, to explore unknown territories in the LDM space, and to provide
directions for future activities in this field
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Conclusions

• Dark matter in the MeV-to-GeV range is largely unexplored.
• Beam Dump eXperiment at JLab: search for Dark sector
particles in the 1 ÷ 1000 MeV mass range.
• High intensity (' 1022 EOT/year), high energy (11 GeV) e−

beam
• Detector: ' 800 CsI(Tl) calorimeter + 2-layers active veto +
shielding. Reuse BaBar crystals with improved SiPM readout

• BDX can be ready to run within ' 2 years, and will explore unknown
territories in the LDM space

• Current experiment status:
• Full proposal submitted to JLab PAC 44 - conditionally
approved

• On-site background measurements and detector optimization to
fulfill PAC requests: update to PAC 45

BDX can produce important physics results, exploring unknown
territories in the LDM space, and providing directions for future

activities in this field 30 / 30
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χ kinematics in the beam-dump
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