Introduction E	xperimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions

The BDX experiment at Jefferson Laboratory

Andrea Celentano On behalf of the BDX collaboration

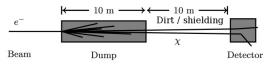
INFN-Genova

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	000	00		0
Outline					

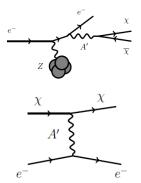
- 2 Experimental setup
- 3 Backgrounds
- Experiment reach
- 5 Experiment status

6 Conclusions

Beam Dump eXperiment: Light Dark Matter (LDM) direct detection in a e^- beam, fixed-target setup¹


 χ production

- High-energy, high-intensity e⁻ beam impinging on a dump
- χ particles pair-produced radiatively, trough A' emission

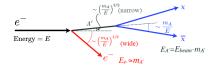

 χ detection

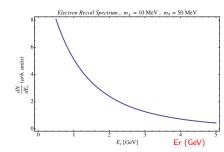
- Detector placed behind the dump, $\simeq 20m$
- Neutral-current χ scattering on atomic e^- trough A'• exchange, recoil releasing visible energy
- Signal: high-energy EM shower, E > .3 GeV

Number of events scales as: $N \propto \frac{\alpha_D \varepsilon^4}{m^4}$

LDM parameters space: M'_{A} , M_{χ} , ε , α_D $M'_A \simeq 10 \div 1000 \text{ MeV}$ $M_\chi \simeq 1 \div 100 \text{ MeV}$

¹For a comprehensive introduction: E. Izaguirre *et al*, Phys. Rev. D 88, 114015



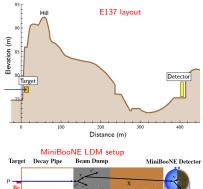

Production: Main features follows from thin-target kinematics $* e^-$ energy loss and secondaries emission in the dump

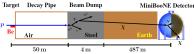
- Thin target kinematics:
 - A' emitted with forward kinematics, $E'_A \simeq E_0 \label{eq:emitted}$
 - High-energy χ beam strongly focused along primary beam direction allowing a compact detector
- e^- in the dump: e^- loses energy by ionization and Bremsstrahlung, χ kinematics gets broader

Detection: $\chi - e^-$ elastic scattering

- e^- recoil: EM shower (O(GeV))
- Background rejection is not critical

Introduction Experimental setup Experiment status Conclusions 000

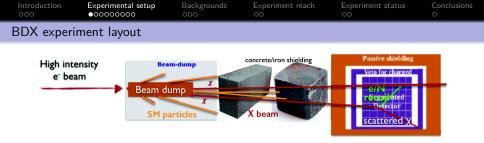

BDX vs past/current beam-dump experiments


Past e^- beam-dump experiments (E137):

- Accumulated charge was limited (E137: O(10²⁰) EOT)
- LDM results are a re-analysis of old data²- the experiment itself was not optimized for this research

p beam-dump experiments (LSND/MiniBooNE³):

- Higher beam-related backgrounds (hadronic environment) - higher production vield
- Complementarity: •
 - Experimental: different beams / different signals
 - Theoretical: leptophilic vs leptophobic models



An optimized e^- beam-dump experiment can explore new territories in

the LDM space

²PRL 113, 171802 (2014)

³1702.02688

The experiment is designed with two goals:

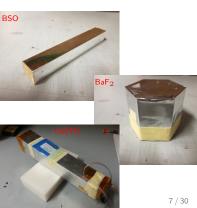
Producing and detecting LDM

- High-intensity e^- beam, $\simeq 10^{22}$ electrons-on-target (EOT)/year
- Medium-high energy, >10 GeV
- $\simeq 1 \ m^3$ (1-5 tons) detector
- EM-showers detection capability

Reducing background

- Passive shielding between beam-dump and detector to filter beam-related backgrounds (except vs)
- Passive shielding and active vetos surrounding the active volume to reduce and identify cosmogenic backgrounds
- Segmented detector for background discrimination based on event topology
- Good time resolution to perform detector-veto coincidence

	Experimental setup o●ooooooo	Backgrounds 000	Experiment reach 00		Conclusions 0		


BDX inner detector

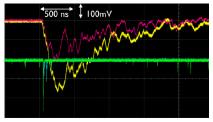
Active volume requirement: sensitivity to high-energy EM showers Technology: homogeneus EM calorimeter made with scintillation crystals and SiPM readout

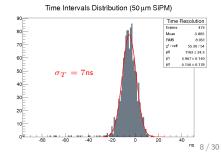
- High crystal density: maximize event yield with compact detector
- Homogeneous solution: minimize dead-spaces and passive materials - critical for background rejection
- Detector segmentation implemented with modular design - each modulus being a matrix of crystals
- SiPM readout: reduce dead spaces between moduli compared to traditional PMT readout, with similar performances (+ self-calibration / low-HV / reliability)
- Time-resolution requirements: O(5 ns), to perform a coincidence with the active-veto system

Different options have been considered: BGO, BSO, BaF_2 , CsI(TI)

Introduction 000	Experimental setup 00000000	Experiment reach 00	Experiment status	Conclusions 0
Calorimeter	R&D: CsI(TI)			

A dedicated characterization campaign has been performed to measure CsI(TI) crystal+SiPM properties and verify they are compatible with BDX requirements


Setup:


- Cosmics-ray coincidence setup with two plastic scintillator counters read by PMT
- Trigger given by coincidence of two PMTs
- Csl(Tl) crystal with 25-μm, 6x6 mm² SiPM readout. FEE as foreseen in the final detector (custom trans-impedance amplifier)

Results:

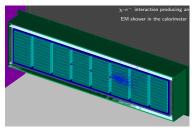
- Light-yield with SiPM readout : $\simeq 1 \ {\rm phe} \ / \ {\rm MeV} \ / \ {\rm mm}^2 \ (1 \ \mu {\rm s} \ {\rm integration} \ {\rm window})$
- Time resolution @ 30 MeV: $\sigma_T = 7$ ns

Results were later confirmed with measurements from BDX detector prototype: CsI(TI)+SiPM readout is the optimal choice for the BDX experiment

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	000	00		O
BDX calorin	neter				

BDX detector: state-of-the-art EM calorimeter, Csl(Tl) crystals with SiPM-based readout. Possibility to re-use existing BaBar Csl(Tl) crystals (informal agreement already discussed) Detector design:

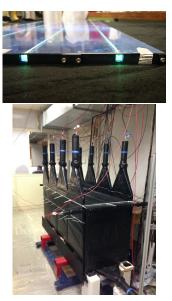
- \simeq 800 Csl(Tl) crystals, total interaction volume $\simeq 0.5m^3$
- Modular detector: change front-face dimesions and total lenght by re-arranging crystals


Arrangement:

- + 1 module: 10x10 crystals, 30-cm long. Front face: 50x50 \mbox{cm}^2
- 8 modules: interaction length 2.6 m

Signal:

- EM-shower, $E_{thr}\simeq 300$ MeV, anti-coincidence with IV and OV
- Efficiency (conservative): O(10\%) refined cuts on EM shower directionality can improve this

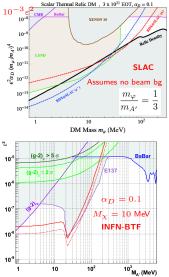

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	000	00		0
BDX active	veto				

Active veto requirements: high efficiency for charged particles detection, hermeticity, compactness

Technology: two layers of plastic scintillator counters, made of different paddles, each read by WLS fibers + SiPMs (IV) / PMTs (OV). 5-cm lead vault between two layers to shield photons

R&D:

- Veto efficiency for charged particles measured with cosmics-ray setup, in different positions: $\overline{\varepsilon} > 99\%$
- On-going effort to replace light guides by slim wavelength-shifting plastics to reduce dead spaces and simplify mechanical supports


Different e^- facilities have been investigated. Requirements: high-energy (beam focusing and larger parameters space coverage), high-EOT

SLAC - LCLS2

- E_e = 4 (8) GeV, $\simeq 3\cdot 10^{21}$ EOT/y
- Pulsed beam 1 MHz: reduced cosmogenic bg
- Infrastructure costs limited
- Possible bg from X-ray beam-line
- Time-line: \simeq 2020

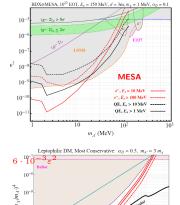
Frascati BTF

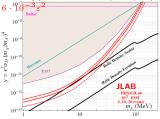
- $E_e = 1.25 \text{ GeV} \text{ (upgrade)}, \simeq 3 \cdot 10^{20} \text{ EOT/y}$
- Pulsed beam 50 Hz: no cosmogenic bg
- Minimal infrastructure cost
- 2-3 years from now

11/30

Introduction	Experimental setup	Experiment reach	Experiment status	Conclusions
000	000000●00	00	00	O
BDX: exper	iment facility			

Mainz (MESA)

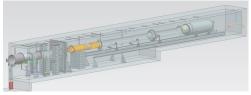

- + $E_e=$ 0.15 GeV, $\simeq 10^{22}-10^{23}$ EOT/y
- $E_e < E_{\pi}$, almost no beam-related backgrounds
- CW beam (3 ns)
- Machine commissioning: 2020


Mainz (MAMI)

- $E_e = 1.6 \text{ GeV}, \simeq 10^{21} \text{ EOT/y}$
- Non-trivial logistic to place detector after existing A1 beam-dump

JLab

- $E_e = 11 \text{ GeV}, \simeq 10^{22} \text{ EOT/y}$
- CW beam (4 ns)
- Requires new experimental hall behind Hall-A beam-dump
- Beam is available, beam-time already approved (Moller experiment)

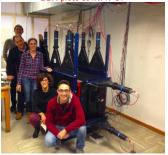

JLab is the leading option for the BDX experiment

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	000	00		0
JLab facility					

Beam Dump eXperiment at Jefferson Laboratory behind Hall-A beam-dump

- Already-approved experiments with more than 10²², 11 GeV EOT (Moller, PVDIS)
- Detailed description of dump geometry and materials avaialable and implemented in simulations
- Verified compatibility with the planned experiments (Moller setup: beam rastering and target-lenght effects are negligible)
- Detailed estimate of costs / time scale of new experimental hall construction behind Hall-A beam dump

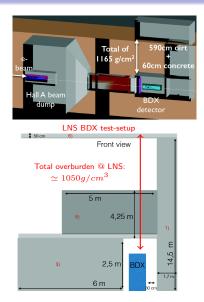
Hall-A beam-dump: Aluminum plates immersed in water for cooling.


Introduction 000	Experimental setup	Backgrounds 000	Experiment reach 00	Experiment status	Conclusions 0
BDX detec	tor prototype				

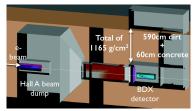
A small-scale protoype of the BDX detector was constructed and installed at INFN-CT (and later moved to INFN-LNS) **Goals:**

- Validate the full BDX design and technical choices
- Measure cosmogenic background in a configuration similar to the final detector setup
- Project results to the full BDX-detector and obtain background rate estimate
- Validate MC

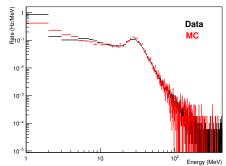
Prototype setup:


- 1 CsI(TI) crystal (BaBar endcap), 2 × SiPM readout (25 μm, 50 μm)
 - Currently upgraded to 4x4 matrix of Csl(Tl) crystals
- Inner-veto layer: plastic scintillator + WLS-fibers/SiPM readout
- 5-cm lead layer
- External-veto layer: plastic scintillator + PMT readout

BDX-proto at INFN-CT

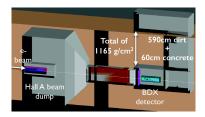

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions			
000	000000000	●00	00		0			
Cosmogenio	Cosmogenic backgrounds							

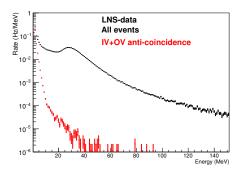
- Cosmic background measured with the BDX prototype at INFN-CT and at INFN-LNS, with similar overburden as expected at JLab
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate (E_{thr} ~ 300 MeV) < 2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)



	Experimental setup 000000000	0 0 0	Experiment reach	Experiment status	Conclusions O
Cosmogenic	backgrounds				

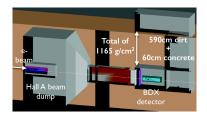
- Cosmic background measured with the BDX prototype at INFN-CT and at INFN-LNS, with similar overburden as expected at JLab
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate (E_{thr} \simeq 300 MeV) < 2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)

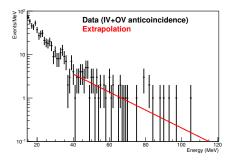



Crystal energy deposition

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	●00	00		O
Cosmogenic	backgrounds				

- Cosmic background measured with the BDX prototype at INFN-CT and at INFN-LNS, with similar overburden as expected at JLab
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate ($E_{thr} \simeq 300$ MeV) < 2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)

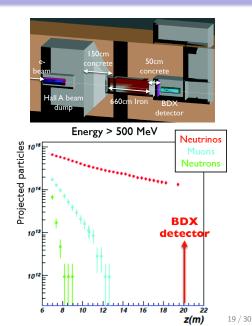




Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions
000	000000000	●00	00		O
Cosmogenio	c backgrounds				

- Cosmic background measured with the BDX prototype at INFN-CT and at INFN-LNS, with similar overburden as expected at JLab
- Geant4 simulations (GEMC framework) in very good agreement with data
- The majority of cosmic muons are detected and rejected by the two veto detectors, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate ($E_{\it thr}\simeq 300$ MeV) <2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)

Threshold	Projected counts
250 MeV	(57 ± 25)
300 MeV	(4.7 ± 2.2)
350 MeV	(0.037 ± 0.022)

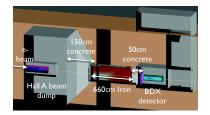


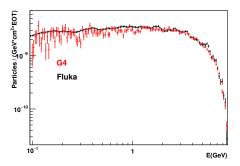
Cosmogenic background is negligible with high-energy threshold. It will be measured on-site when beam is off

	ed backgrounds	000	00	00	0
Introduction	Experimental setup	Backgrounds 0●0	Experiment reach	Experiment status	Conclusions

Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)


Beam-relate	ed backgrounds			
	Experimental setup 000000000	0 0 0	Experiment status 00	Conclusions 0


Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)

Muons

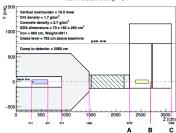
- High-energy muon production in the dump dominated by the
 - $\gamma \to \mu^+ \mu^- \ {\rm process}$
 - Very good consistency between G4 and Fluka for μ production in the dump
 - On-site measurement of muons after the Hall-A beam dump is foreseen (see next slide)
- 6.6m iron shield (+2 m concrete) enough to range-out high energy muons: no particles at the detector location

Room rolate	ed backgrounds			
	Experimental setup 00000000		Experiment status 00	Conclusions 0

Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)

Neutrinos: only particles reaching the detector


- Spectrum mainly at low-energy, dominated by μ^+ decay / μ^- capture on nuclei
- High-energy part from in-flight decays and prompt production processes

150cm 660cm Iron dump Impinging neutrino - energy spectra Energy > 500 MeV All neutrino 101 10" $v_{\mu} + \overline{v}_{\mu}$ 10" 101 10" 101 101 10 10* E(MeV) E(MeV)

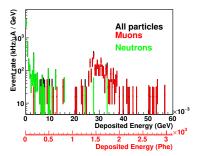
Possible background contribution from ν_e interacting via CC in the detector, producing a high-energy e^{\pm} resulting in a EM shower **Neutrino irreducible background** is the ultimate limitation for BDX. Preliminary estimate ($E_{thr} = 300 \text{ MeV}$): $N_{\nu_e + \overline{\nu}_e} = 10$ counts for 10^{22} EOT Measurement campaign to characterize the flux of high-energy μ produced in the Hall-A beam dump. Goal: validate MC for forward particles production with an absolute normalization point Setup:

- Drill hole behind beam-dump at foreseen BDX detector location
- Insert a CsI(TI) crystal surronded by plastic scintillator counters, matching the beam height. Plastic counters are segmented to provide directional information
- Measure μ flux when 11-GeV beam is on

Hall A Beam Dump / C1

Beam-related μ : on-site measurement

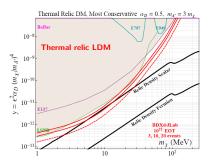
Measurement campaign to characterize the flux of high-energy μ produced in the Hall-A beam dump. Goal: validate MC for forward particles production with an absolute normalization point Setup:

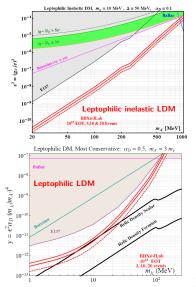

- Drill hole behind beam-dump at foreseen BDX detector location
- Insert a CsI(TI) crystal surronded by plastic scintillator counters, matching the beam height. Plastic counters are segmented to provide directional information
- Measure µ flux when 11-GeV beam is on

Status:

- Detailed MC study performed and discussed with JLab management (BDX-Note 2017-001)
- Detector design completed and materials procured •
- Test planned in fall 2017 / spring 2018 •
 - Time-scale: O(5 months) administrative / civil work, 1-week measurement
 - Budgetary estimate: 40k\$

Current dump configuration - no shielding!

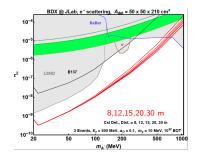




BDX is an optimized beam-dump experiment that can be conclusive for some Light Dark Matter scenarios. Obtained results will guide future second-generation experiments

The BDX sensitivity for different LDM models has been evaluated - $10^{22}\ {\rm EOT}$:

- Thermal relic LDM
- Leptophilic LDM
- Leptophilic inelastic LDM

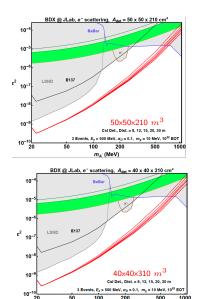


Introduction	Experimental setup	Backgrounds	E×periment reach	Experiment status	Conclusions	
000	000000000	000	⊙●	00	0	
Systematic	Systematic studies					

A detailed study of the experimental setup starting from the current configuration - has been performed to evaluate the most promising configuration. Sensitivity for fermionic LDM used to evaluate stability with respect to experimental variables.

Results:

- Very weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV



Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions	
000	000000000	000	⊙●	00	O	
Systematic	Systematic studies					

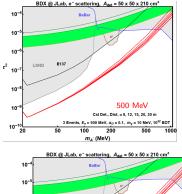
A detailed study of the experimental setup starting from the current configuration - has been performed to evaluate the most promising configuration. Sensitivity for fermionic LDM used to evaluate stability with respect to experimental variables.

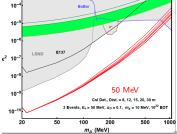
Results:

- Very weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV

m₄ (MeV)

26 / 30


Introduction 000	Experimental setup	Backgrounds 000	Experiment reach ⊙●	Experiment status	Conclusions 0
Systematic studies					


A detailed study of the experimental setup starting from the current configuration - has been performed to evaluate the most promising configuration. Sensitivity for fermionic LDM used to evaluate stability with respect to experimental variables.

Results:

- Very weak dependence on the dump-detector distance
- No sizeable effect by varying the detector footprint (with fixed active volume)
- No sizeable effect by varying the electron energy threshold: 500 MeV vs 50 MeV

The BDX experimental configuration has been fully defined and proved to be optimized for the experiment

27 / 30

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions		
000	000000000	000	00	●0	0		
BDX curren	BDX current status						

BDX status:

- R&D activity ongoing from 2014 LOI presente to PAC42, with strong positive feedback
- Full proposal presented to JLab PAC44, approved - conditionally to MC benchmarking with on-site measurements, and to detector optimization
- On-site μ measurement foreseen fall 2017 / spring 2018
- Detector optimization in progress with results from MC simulations - validated trough BDX prototype data: plan to give an update to PAC45

Collaboration:

- BDX proposal signed by more than 100 researchers
- Core group working on key aspects: physics, detector, simulations
- Connection with groups involved in similar activities at SLAC, CERN, Mainz and LNF

Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

The BDX Collaboration

M. Battaglieri¹⁴, A. Bersani, B. Caiffi, A. Celentano¹, R. De Vita¹, E. Fanchini, L. Marsicano, P. Musico, M. Ovipenko, F. Panza, M. Bipati, E. Santopinto, M. Talmi Intritute Nanismall: di Fusion Nucleare, Scriver di Geneva e Dipatrimenda di Fusion Nucleare, Scriver, May

V. Bellini, M. Bondí, M. De Napoli[†], F. Mammoliti, E. Leonora, N. Randazzo, G. Russo, M. Sperduto, C. Sutera, F. Tortorici Istituto Nazionale di Fisica Nucleare, Sezione di Catenia, Catenia, Italy

N.Baltzell, M. Dalton, A. Freyberger, F.-X. Girod, V. Kubarovsky, E. Pasyuk, E.S. Smith¹, S. Stepanyan, M. Ungaro, T. Whitlatch Jefferson Lab, Newport News, VA 23606, USA

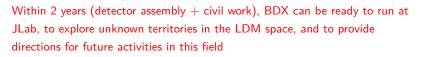
E. Izaguirre¹ Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y3

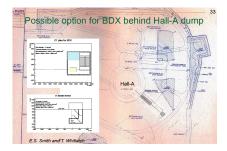
G. Krajaše¹ Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510

> D. Snowden-Ifft Occidental College, Los Angeles, California 90041, USA

*Contact Person, email: Marco.Battaglieri@ge.infn.it !Spokosperson

From PAC44 report: The committee is excited about the physics case, and encourages the BDX collaboration to optimize their experiment in accordance with the many comments received from the TAC and the PAC.

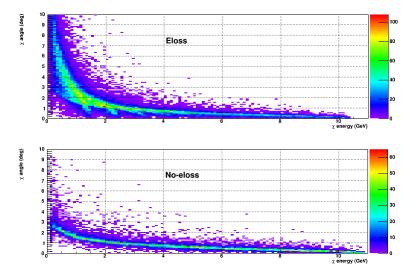

Introduction	Experimental setup	Backgrounds	Experiment reach	Experiment status	Conclusions				
000	000000000	000	00	⊙●	0				
BDX foreseen activities									


Detector

- Technology selected and design defined. Active volume: CsI(TI) calorimeter with SiPM readout. Active veto: plastic scintillator + SiPM / PMT readout
- \simeq 1-year time-scale to assembly detector: refurbish 800 BaBar crystals, mount calorimeter, mount active-veto
- $\simeq 1.5M$ total cost for full BDX detector construction

Civil construction

• Detailed costs / time-scale evaluation in collaboration with JLab facility office: $\simeq 1.5M$, $\simeq 2$ -years time-scale for construction


	Experimental setup 000000000	Backgrounds 000	Experiment reach 00	Experiment status	Conclusions •
Conclusions					

- Dark matter in the MeV-to-GeV range is largely unexplored.
- Beam Dump eXperiment at JLab: search for Dark sector particles in the 1 \div 1000 MeV mass range.
 - High intensity ($\simeq 10^{22}~{\rm EOT/year}),$ high energy (11 GeV) e^- beam
 - Detector: $\simeq 800~{\rm Csl(Tl)}$ calorimeter + 2-layers active veto + shielding. Reuse BaBar crystals with improved SiPM readout
- BDX can be ready to run within \simeq 2 years, and will explore unknown territories in the LDM space
- Current experiment status:
 - Full proposal submitted to JLab PAC 44 conditionally approved
 - On-site background measurements and detector optimization to fulfill PAC requests: update to PAC 45

BDX can produce important physics results, exploring unknown territories in the LDM space, and providing directions for future activities in this field

Backup slides

χ kinematics in the beam-dump

