#### Direct detection of dark sector DM via electron counting in liquid xenon

# Peter Sorensen on behalf of the U<sub>A</sub>,(1) Collaboration

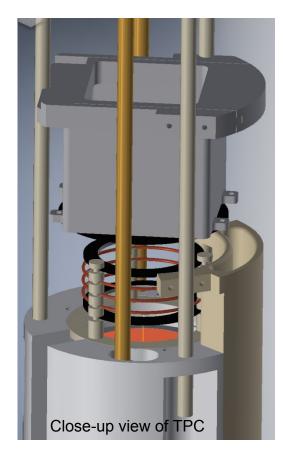
U.S. Cosmic Visions Workshop, 23-25 March 2017, College Park, Maryland

## U<sub>A'</sub>(1) concept

- 10 kg scale liquid xenon TPC with complete focus on S2 signal and mitigation of e- backgrounds
- Without concern for S1 (primary scintillation collection)
  - the design is far simpler
  - and cheaper
  - contains less plastics (easier to achieve purity)
- A 2 kg scale prototype is already built
  - LLNL detector for CENNS
  - Update prototype design for 10 kg active while studying ebackground mitigation
- Underground deployment at SURF
  - $\circ$   $\,$   $\,$  Small footprint, likely compatible with BLBF space  $\,$

XENON10, disassembled 10 years ago but state of the art...

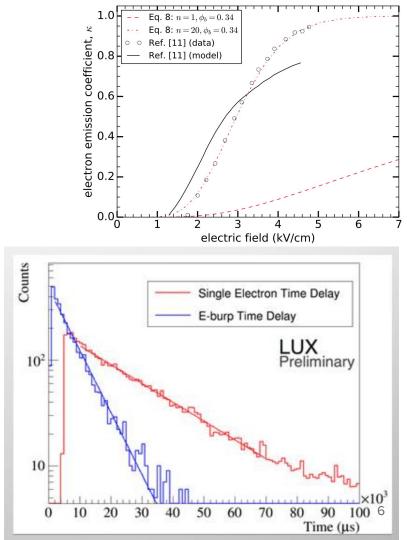
#### **Target mass versus atomic bandgap**


- Xe has a large >9.2 eV band gap, which suppresses the scattering rate
  - Semiconductors have ~1 eV band gap, a distinct advantage, however...
- Mass is a relentless advantage in direct detection
- And, tonne-scale liquid xenon TPCs are being deployed and/or built
  - 1000+ kg xenon vs <1 kg for semiconductors
  - It would be great to leverage large, quiet, sensitive targets (e.g. LZ) which are being deployed
     anyway for related purposes
- Even a 10 kg target can search new parameter space in the short term

### Sensitivity not guaranteed (unless!)

- Ability of LZ/XENON1T to do single electron analyses presently doubtful
  - XENON10: single electron sensitive search but limited by electron train background
  - XENON100: 4-5 electron threshold and still limited by background
  - LUX: in progress...
  - e- backgrounds have been considered a minor irritation to the primary goal of finding WIMPs
  - Efforts to mitigate them have so far been modest
- Mitigation requires a dedicated effort
  - Initial small-scale (surface) efforts underway (LLNL, LBL)
  - Underground test bed eventually essential due to long lifetime of correlated backgrounds
- Might as well get a science result in the process!
  - The  $U_{\Delta}$ ,(1) experiment

#### **Prototype already built at LLNL**

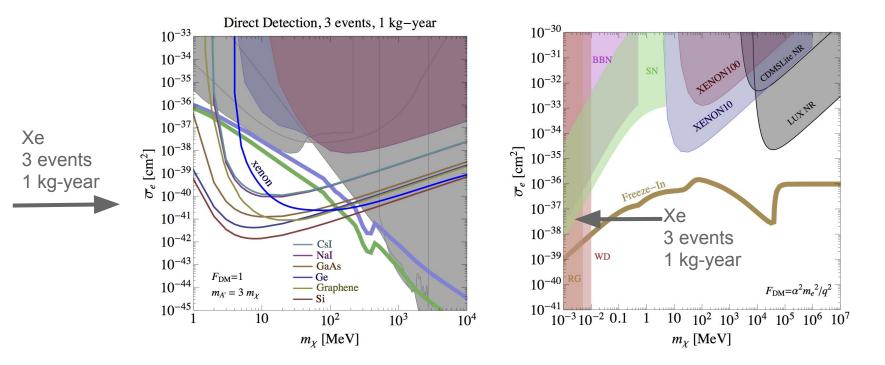







#### Primary R&D is to control e- backgrounds

- LUX studies underway (Jingke Xu, LLNL)
  - e.g. talk at APS 2016 April meeting
  - Two primary classes of electron backgrounds
  - Single e- backgrounds
  - e- clusters
    - events tend to be quite large
    - So less of a concern for few e- counting
- Recent theoretical work on understanding thermal e- trapping (Sorensen, LBL)
  - Predicts trapping lifetime O(10) ms
  - o arXiv:1702:04805
- Additional R&D is underway at LBL and LLNL




#### **Sources of electron backgrounds**

| Sources                                                                                                                                                              | Mitigations                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Trapped electrons at the liquid gas interface                                                                                                                        | <ol> <li>larger electron emission field</li> <li>Infrared photons to liberate trapped<br/>e-</li> <li>Last resort: HV switching</li> </ol> |
| <ul> <li>Spontaneous emission from metal surfaces</li> <li>A. Due to inhomogeneities</li> <li>B. Due to lowered work function resulting from trapped ions</li> </ul> | <ul><li>Varies</li><li>A. Treatment of metal surfaces</li><li>B. AC field to de-trap ions</li></ul>                                        |

#### **Reach thermal DM production parameter space in <1 year!**

The only existing limits on dark sector DM are from liquid xenon targets

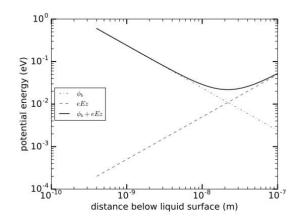


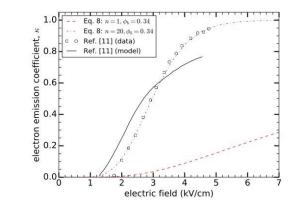
plots from Essig et al, cf. arXiv:1703:00910

#### **Timescale and budget**

- One year to update design (based on LLNL prototype)
- One year to build and deploy at SURF
- We are talking about a 10 kg scale experiment so these are realistic estimates
- 6 months to commission and verify the success of the background mitigation strategies
- 6 months to obtain first results
- 3 years total project
  - Of which approx 2 years include R&D
- Estimate \$3M project




- Deploy a small O(10) kg liquid xenon TPC with a focus on electron counting and mitigation of e- backgrounds
  - A cost-effective fishing expedition with a clear target! (cf. Weiner talk, morning plenary)
- Potential for rapid exploration of new dark sector DM parameter space
  - Including freeze-out / freeze-in regions
  - Complementary to beam dump experiments
- Provide essential data on e- backgrounds such that much larger detectors can later also be sensitive to dark sector DM
- Leverage existing infrastructure, expertise and underground facility access within LUX/LZ/community
  - Interested in joining this effort? Contact Adam Bernstein and/or Peter Sorensen


#### **Additional details about mitigations**

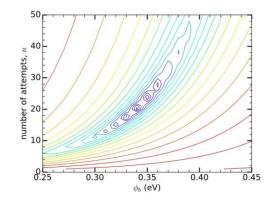
- larger electron emission field
  - $\circ$  XENON achieved ~5.5 kV/cm
  - Suspect >7 kV/cm needed for substantial reduction of e-train bkgd
- Infrared photons to liberate trapped e-
  - Liquid surface trapping potential is 0.34 eV
  - 940 nm LEDs readily available (1.3 eV photon), trigger on S2
- Last resort: HV switching
  - Divert trapped electrons back to gate electrode
  - Possible in principle, may actually work quite well

#### **Additional detail about dark counts**

- From recent paper, arXiv:1702.04805
  - Xe liquid/gas interface presents a 0.34 eV potential barrier for e- dark counts
  - This gives a O(10) ms trapping lifetime







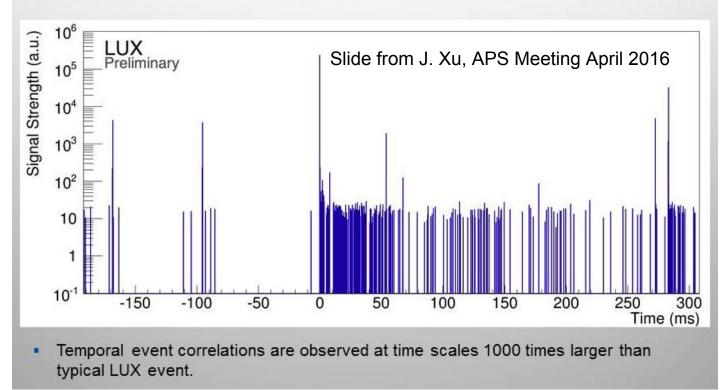
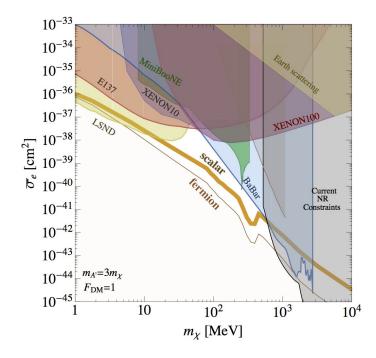


FIG. 2. Potential energy of an electron just below the liquidgas interface.

FIG. 1. Absolute efficiency for electron emission from liquid into gas xenon, as a function of the electric field in the liquid phase.


FIG. 4. Contour plot of  $\chi^2$  for comparison of the emission model given by Eq. 8 vs the data shown in Fig. 1. Agreement at  $2\sigma$  is confined to  $\phi_b = 0.34 \pm 0.1$  eV.

#### **Additional details about dark counts**

A LUX event waveform over 500ms (maximum drift time in LUX: 0.325 ms)



#### **Additional plots**

