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Special issues related to LDM

* Very few quantas or very low gap (high “error rates”) -
In the eV range

* “Instrumental” backgrounds defeat good old radiogenic
backgrounds

e Calibrating signal becomes challenging

* Technologies are generally not mature, need
development from scratch
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A way to overcome LDM challenges

* searching for inelastic processes may allow to significantly
lower the experimental threshold Essig, Mardo, Volansky 2012

* Chemical bond-breaking phenomena has been studied in
detalil Essig, Mardon, Slone, Volansky 2016

Hs-like Molecule

) ° 2
MeV] [MeV

* However, a practical implementation still missing — here our
proposal steps in
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The Color of Fancy Sapphire

All are AI203 >99.99%
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Color Centers

* Itis known for many years that radiation damage gives color
to transparent windows near e.g. nuclear power plants

* There are various mechanisms causing this effect, and the
Incident radiation can be gamma, neutron or charged particles

(a) Blank sample Exposed sample (A = 61.5 hm)
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F-center in a nutshell
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Atomic structure of the F center



F-center in a nutshell
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Conceptual setup

Segmented
photo-detector

Exciting Laser

/ <4 Filter and focusing optics
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* High intensity laser exciting beam in a cavity

Target crystal in an
optical cavity 5
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* Constantly monitoring outgoing relevant fluorescence photons
* Resolution of single CC in ~105 with reasonable parameters
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The challenges of CCs ":'3

* Missing orders of magnitudes in background

* Direct calculation extremely hard due to phase space
(thresholds, types, electronic structures...)

 However, only very difficult once established the signal

* Need to understand and achieve:

- Annealing, bleaching, counting, production,
discrimination, accurate calibration sources, low price,

high purity....
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The benefits of CCs

* |dentified several ways to oz:iiilz gzicijroliricls
- Annealing, spatial resolution, spectral separation...

* Natural cliscrirninzior)

* Likely clirectiorizl

* Multiple targets, each with different signal

e Calibration is possible

 Many optional handles: B field, RF, polarization...

* And of course, almost the only one on that side of
town (L0 2V igyyn)!
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Modulation and directionality
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e Sub-daily modulation due to different thresholds wrt the lattice axes

e Strongest for near-threshold masses
* A unique signature that differs from all types of background

* On top of that, annual modulation is still expected
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With Cheshnovsky, Volansky
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The goal:

Identifying a crystal which is sensitive to
low-energy-neutrons (and LDM...)

(and check the discrimination between Nuclear
Recoils coming from neutrons, and Electronic
Recoils originating from gammas)
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The goal:
Identifying a crystal which is sensitive to
low-energy-neutrons (and LDM...)

(and check the discrimination between Nuclear
Recoils coming from neutrons, and Electronic
Recoils originating from gammas)

Two parallel ongoing efforts:
1) Irradiation of as many crystals as possible

2) Establish an optical setup for F-centers
measurement
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Many optional targets, but little iIs known

calcium (II) fluoride
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Crystal Irradiation in SARAF -
30 keV neutrons




Crystal Irradiation
Neutron spectrum

Neutrons per 0.0002 mC of protons on LiLIT
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MNeutrons per 0.0002 mC of protons on LILIT
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Fluorescence Measurement

Each crystals Fluorescence is measured before and after
Irradiation. Reference crystals irradiated with Gammas only are

also measured.
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Required sensitivity of 10™° for initial calibrations,
compared to 10° of standard vwicle<ozirid fluarometers

Sensitivity requirements rise as we progress, to reach
10 with wide band!
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Emission Wavelength [nm]

Preliminary results

LiIF, before and after n irradiation
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Emission Wavelength [nm]

Preliminary results

CaF, before and after n irradiation
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Summary

* Color Centers are a promising avenue for low energy NR
detection

* The current experimental and theoretical knowledge is
insufficient, much work is needed on both

* Irradiation of multiple samples done, and will continue

* Optical system with increased sensitivity is being developed,
expected to give results this year

* After identifying the “promising avenues”, the real work begins!
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