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• Thermal Dark Matter is important beyond WIMPs

• sub-GeV (i.e. Standard Model scales!) is the next 
obvious place to seriously explore thermal DM

• The key role of accelerator experiments in any light dark 
matter program

• Comments on testing or discovering LDM  

Thursday, 23 March, 17



TeV

 Thermal DM
Axions

Sterile
Neutrinos

Hidden sector

WIMP

Asymmetric

Gravitino  

µeV keV MeV GeV

Targeted Exploration

• Wide range of possibilities – even the ones 
highlighted by P5 span ~20 orders of 
magnitude in DM mass!

Thursday, 23 March, 17



TeV

 Thermal DM
Axions

Sterile
Neutrinos

Hidden sector

WIMP

Asymmetric

Gravitino  

µeV keV MeV GeV

Targeted Exploration

Thermal Dark Matter of particular importance 

• Wide range of possibilities – even the ones 
highlighted by P5 span ~20 orders of 
magnitude in DM mass!
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Thermal Dark Matter: A Prime Target

Simple: Interactions between dark and familiar 
matter maintain thermal equilibrium as Universe 
cools, until critical density below which dark matter 
annihilation “freezes out” 

Predictive: Strength of dark matter interaction with 
familiar matter determines the residual abundance –
so observed DM abundance predicts strength of 
DM interactions

Straightforward: Many well-motivated models 
have the ingredients to realize thermal dark matter
(including, but not limited to, WIMPS)

Data Driven! Evidence from CMB and BBN for hot 
& dense thermal phase of Universe. We don’t have 
to speculate (much) about thermal origin possibility. 
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Vicinity of Weak Scale: A Prime Target
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

7

Vicinity of Weak Scale: A Prime Target
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(accidentally close to weak scale)
...but where do we expect 
hidden sector matter – with 
only small couplings to SM 
matter (generated radiatively)?

For decades: look here!
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Vicinity of Weak Scale: A Prime Target
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Where do we expect hidden-
sector matter?

Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

small #⇥MW

(e.g. dark sector scalar 
mixing with SM higgs)
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Vicinity of Weak Scale: A Prime Target
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

Where do we expect hidden-
sector matter?

(e.g. “hidden valley” 
scenario: ~conformal 
to weak scale, then 
confining)

Thursday, 23 March, 17



10

Vicinity of Weak Scale: A Prime Target
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Vicinity of Weak Scale: A Prime Target
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Generic mass scale for 
matter with O(1) coupling 
to origin of EWSB

⇠ MW ⇥ e�#

small #⇥MW

Expect hidden sector matter 
in the vicinity of – but naturally 
below – weak scale

The broad vicinity of the weak scale is 
perhaps the best motivated place to discover 
dark matter:

• An important scale!

• Familiar stable matter resides here!

• Thermal DM works well here!
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Scientific Goal

Test Thermal Dark Matter in the MeV-TeV Range

Need experiments that can explore the MeV-GeV “WIMP”-
like scenarios, analogous to the Direct Detection, LEP, and 
LHC efforts to test WIMPs in the GeV-TeV range.  

What are the ingredients of a high-impact program 
that can address the sub-GeV mass range?

Look to the 30-yr WIMP effort for lessons. 
Many similarities and a few critical differences…
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WIMP & Thermal LDM Programs: 
Improved Starting Information

Cosmology and astrophysics is far more 
advanced:  narrows the set of thermal scenarios

Standard Model is far better explored and 
understood:  narrows the set of interactions

…weakly coupled MeV-GeV vector mediator interactions 
preferred

…p-wave and co-annihilation scenarios preferred
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Characterize the “dark” current - SM current 
interactions mediated by a vector

WIMP & Thermal LDM Programs: 
Phenomenology Similarities
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WIMP & Thermal LDM Programs: 
Phenomenology Similarities

Phenomenology of WIMP scenarios carries over to MeV-
GeV WIMP-like scenarios:

Dark Matter CurrentParticle Type

Different Low-Energy Phenomenology!
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WIMP & Thermal LDM Programs: 
Phenomenology Similarities

Phenomenology of WIMP scenarios carries over to MeV-
GeV WIMP-like scenarios:

Dark Matter CurrentParticle Type

Different Low-Energy Phenomenology!

Just like sneutrino or Dirac neutrino WIMP candidate

Just like neutralino WIMP candidates
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Key Thermal Targets Span Large Range.

WIMP & Thermal LDM Programs: 
Direct Detection Similarities

Z-tree

W-loop

GeV-10 TeV Thermal WIMPs
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Key Thermal Targets Span Large Range.

WIMP & Thermal LDM Programs: 
Direct Detection Similarities

Z-tree

W-loop

GeV-10 TeV Thermal WIMPs

Similar to WIMPs: thermal LDM motivates large 
range of direct detection cross-section
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WIMP & Thermal LDM Programs: 
Radically Different Story for Accelerators

TeV-scale electro-weak states were not easily accessible to 
accelerators when WIMP effort started! 

Decades of development of mid- to high-energy accelerator 
infrastructure and impressively powerful particle detector 
technology has now taken place... 

In fact, a tremendous amount of sub-GeV parameter space 
has already been explored by accelerator experiments! 

Whereas sub-GeV weakly coupled particles readily 
accessible to accelerators as the LDM effort begins
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•Accelerators probe DM interactions at the same momentum scales 
governing freeze-out:  much sharper coupling vs. mass milestones

•Plot sensitivity with unfavorable assumptions for unknown model 
parameters

 Accelerators: Thermal LDM Readily Accessible
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Milestone lines move up as assumptions are varied
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•Accelerators probe DM interactions at the same momentum scales 
governing freeze-out:  much sharper coupling vs. mass milestones

•Plot sensitivity with unfavorable assumptions for unknown model 
parameters

HPseudoLDirac Fermion
Inelastic Scalar

Majorana Fermion

Elastic Scalar

1 10 102 103
10-55.

10-53.

10-51.

10-49.

10-47.

10-45.

10-43.

10-41.

10-39.

10-37.

10-35.

mDMHMeVL

s
e
Hcm

2 L

Can instead use variable 
that determines freeze-out 
abundance vs dark matter 
mass

Pseu
do-D

irac F
ermi

on R
elic T

arget

Majo
rana

Relic
Targ

et

Elas
tic &

Inela
stic S

calar
Relic

Targ
ets

BaBar

LHC

LEP

NA64

Belle IIE137

MiniBooNE

LSND

Pseu
do-D

irac F
ermi

on R
elic T

arget

Majo
rana

Relic
Targ

et

Elas
tic &

Inela
stic S

calar
Relic

Targ
ets

1 10 102 103
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4

mc @MeVD

y
=
e2
a
D
Hm c
êm A

'L4

Thermal Relic Targets & Current Constraints

Milestone are fixed, but accelerator experiments 
move down the plot as assumptions are varied

 Accelerators: Thermal LDM Readily Accessible

Thursday, 23 March, 17



20

Accelerator Experiments already exploring LDM

Remaining 1-3 orders of magnitude represent some of the 
best motivated parameter space. Accelerator efforts poised 
for discovery or decisive result.   An amazing opportunity!
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Much of both scalar DM scenarios has been probed, but it’s 
critical to close the remaining territory!
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Thermal LDM: Mediator Physics Plays a 
Central Role

Accelerator experiments leading the way exploring the possible 
mediator physics!  This is a crucial part of the physics!
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Accelerator Complementarity

Accelerator experiments are in the best position to 
test all GeV-scale (and below) thermal DM scenarios. 

WG3:  Can this be done quickly and at reasonable cost? 

WG3/4:  How far do new experiments need to push for a null 
result to be robust (i.e. of lasting value)? 

WG3/4:  What are the important contributions from existing and 
already planned experiments? 
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Accelerator Complementarity

For this purpose, a clear case can be made that multiple 
techniques are required:

Conversely, can a convincing discovery be made?  After all, 
some of the best motivated parameter space is still unexplored! 

Accelerator Missing Mass/Energy/Momentum

Accelerator Beam Dump Technique

Direct Detection Technique
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Accelerator Complementarity

Missing Mass/Energy/Momentum
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Accelerator Complementarity
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Accelerator Complementarity
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Accelerator Complementarity

Can separately measure:

mA0 ✏ m� ↵D

From visible A’ exp. From missing mass/momentum exp.
(and beam dumps)

Accelerator experiments can 
untangle the physics in detail

Still want Direct Detection to verify 
cosmological stability  

m� < mA0 < 2m�Case I: 

Thursday, 23 March, 17



29

Accelerator Complementarity

Missing Mass/Energy/Momentum
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Accelerator Complementarity
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Accelerator Complementarity

Beam Dump Technique
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Accelerator Complementarity

Given info about 
provides sensitivity to 
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Accelerator Complementarity

Can separately measure:

mA0 ✏ ↵D

From missing mass/momentum exp. From beam-dump exp.

Accelerator experiments can almost 
untangle the physics in detail

Need Direct Detection to measure  
and verify cosmological stability  

m�

Case II: 2m� < mA0
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Conclusions
• Thermal dark matter is simple, predictive, and arguably the 

least speculative possibility.                                                                  
If we do nothing else, we should test this idea!

• The broad vicinity of the weak scale is an excellent place to be 
looking –– the logical extension to the WIMP program.

• Accelerator experiments are in the best position to test (i.e. rule 
out or discover) light thermal DM –– all important scenarios 
are within 1-3 orders of magnitude of existing experiments’ 
cross-section reach.

• Accelerator experiments can also make a decisive discovery, 
and combined with direct detection experiments, can reveal the 
underlying dark sector physics

Thursday, 23 March, 17


