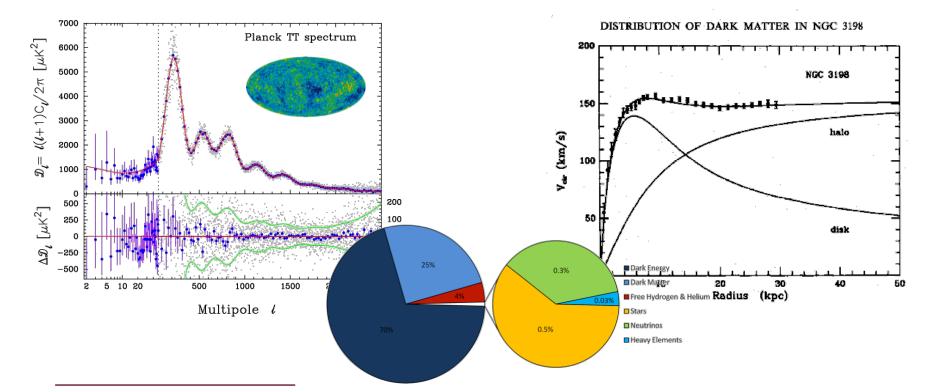


#### Current and Future Results from MiniBooNE-DM (arXiv:1702.02688 [hep-ex])

**R.L. Cooper** New Mexico State University / LANL


On behalf of the MiniBooNE-DM Collaboration



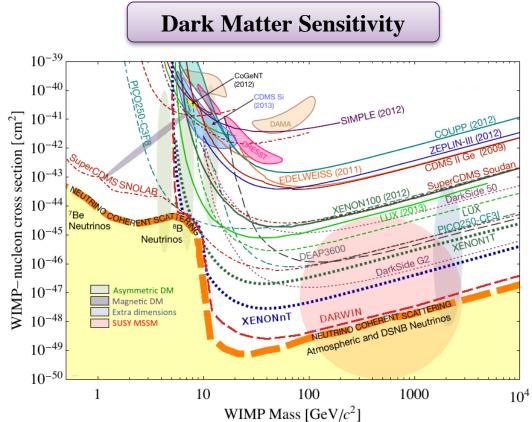
#### MiniBooNE DM Search Road Map

- 2002-2012 MiniBooNE neutrino program.
- 2013 Socialized MiniBooNE DM search idea at SNOMASS, received well by community.
- 2014 Propose and received FNAL PAC approval to run in beam off target mode (DM search enhanced)
- 2014 Ran beam off target, collected 1.86E20 POT.
- 2017 First results on DM search with NCE sample.
- 2017+ working on beam timing and other channels. Expect significant improvement in sensitivity/limits.

## Ample Evidence for Gravitationally Interacting Dark Matter; But What Is It?



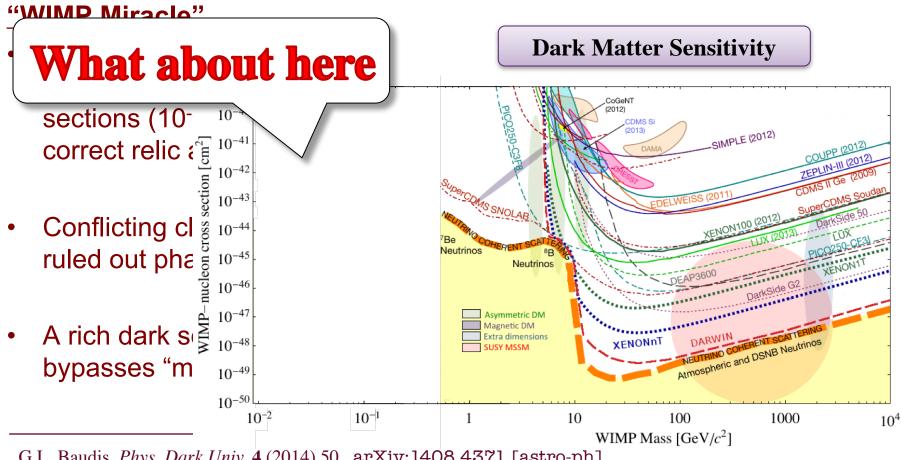
T. S. van Albada et al., *Astrophysical Journal* **295** (1985) 305. Plank Collaboration: P. A. R. Ade et al., *A&A Preprint* (2013).




3/23/17

#### Where Are We With Direct Searches?

#### "WIMP Miracle"


- Electroweak scale masses (~100 GeV) and cross sections (10<sup>-36</sup> cm<sup>2</sup>) give correct relic abundances
- Conflicting claims, mostly ruled out phase space
- A rich dark sector easily bypasses "miracle"



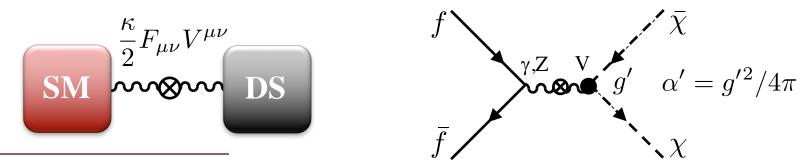
G.L. Baudis, Phys. Dark Univ. 4 (2014) 50. arXiv:1408.4371 [astro-ph].



#### Where Are We With Direct Searches?



G.L. Baudis, Phys. Dark Univ. 4 (2014) 50. arXiv:1408.4371 [astro-ph].




3/23/17

R.L. Cooper - U.S. Cosmic Visions

#### Sub-GeV Dark Matter: Vector Portal

- Lee-Weinberg bound:  $M_{\chi} > O(1 \text{ GeV})$  presumes weak annihilation rate  $\sim M_{\chi}^2 / M_Z^4$  which is too low
- New forces and force carriers  $\rightarrow$  viable light thermal relic
  - 1. Mediate SM interactions to a dark sector
  - 2. Open up annihilation channels circumventing L-W bound
- U(1) kinematic mixing with 4 parameters:  $m_{\chi}$ ,  $m_{V}$ , k, g'



C. Boehm & P. Fayet, *Nucl. Phys.* **B683** (2004) 219. arXiv:hep-ph/0305261 [hep-ph]. C. Boehm et al., *Phys. Rev. Lett.* **92** (2004) 101301. arXiv:astro-ph/0309686 [astro-ph].



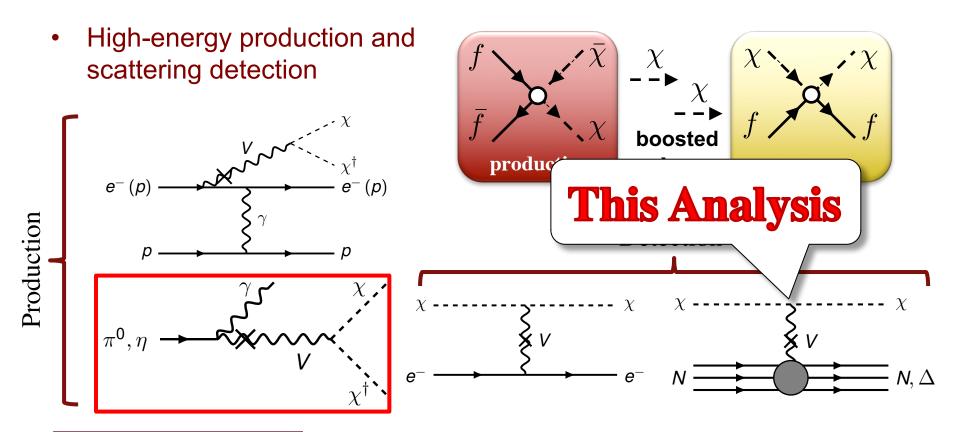
#### Sub-GeV Theories in General


- Vector portal is just one particular model
- Other linkages between Standard Model and potential rich Dark Sector possible
  - Hypercharge portal (U(1) kinematic mixing)
  - Higgs portal
  - Neutrino portal
- Field is richly summarized in SLAC Dark Sectors 2016 proceedings (required reading!)

What's in here? ? SM www DS

Dark Sectors 2016 Workshop: arXiv:1608.08632 [hep-ph].



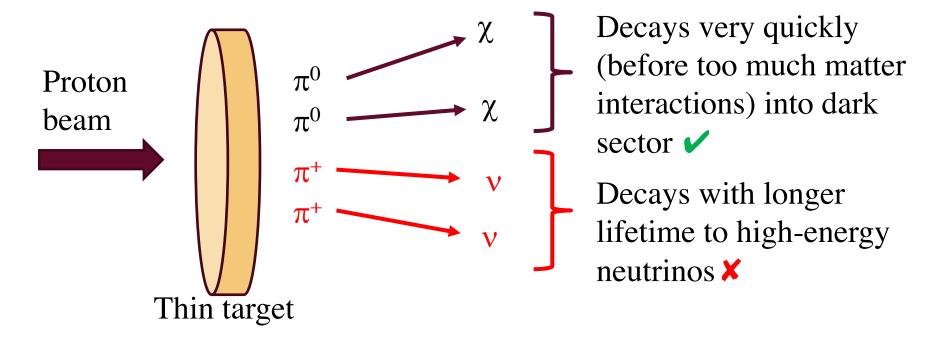

#### **Dark Matter Beams and Detection**



B. Batell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph]. P. deNiverville et al., *Phys. Rev.* **D84** (2011) 075020. arXiv:1107.4580 [hep-ph].



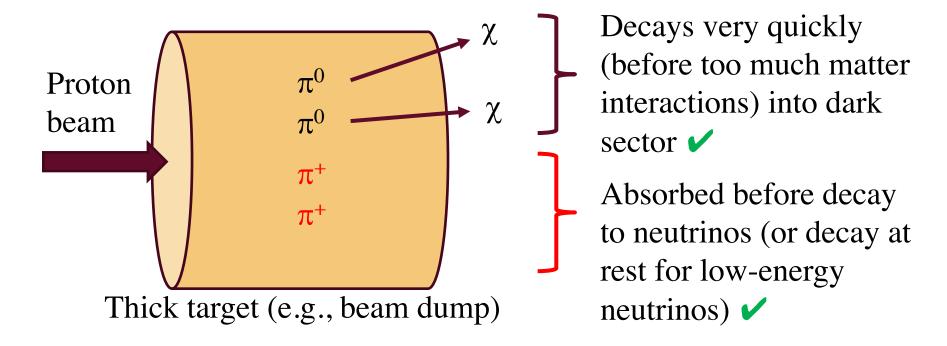
#### **Dark Matter Beams and Detection**




B. Batell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph]. P. deNiverville et al., *Phys. Rev.* **D84** (2011) 075020. arXiv:1107.4580 [hep-ph].



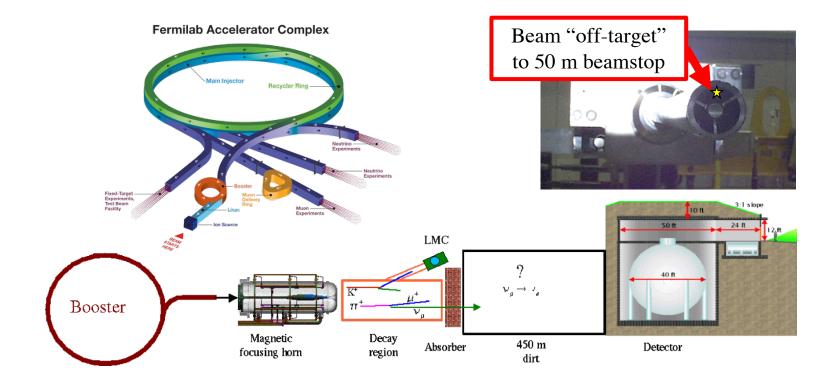
#### Why a Beam Dump Experiment?


- Neutrinos scatters are a background to the DM search
- Beam dump reduces neutrino backgrounds (~50)





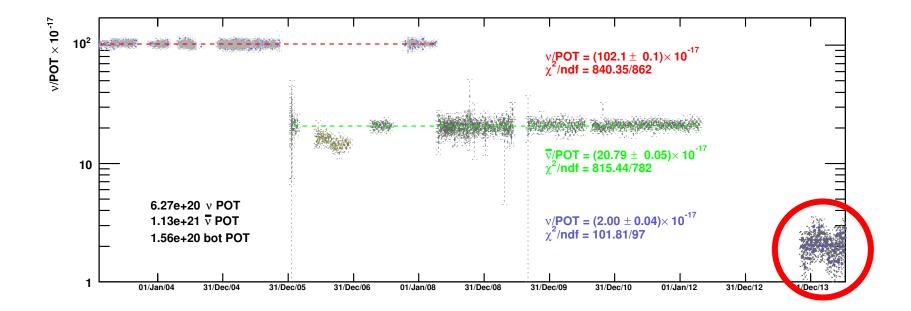
#### Why a Beam Dump Experiment?


- Neutrinos scatters are a background to the DM search
- Beam dump reduces neutrino backgrounds (~50)





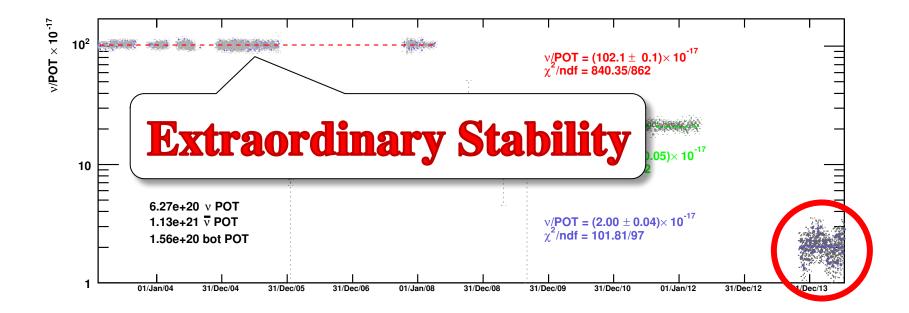
#### **Beam Off-Target Mode**


- Steer beam around target to 50 m beam dump
- Residual neutrino backgrounds from "scraping" and air





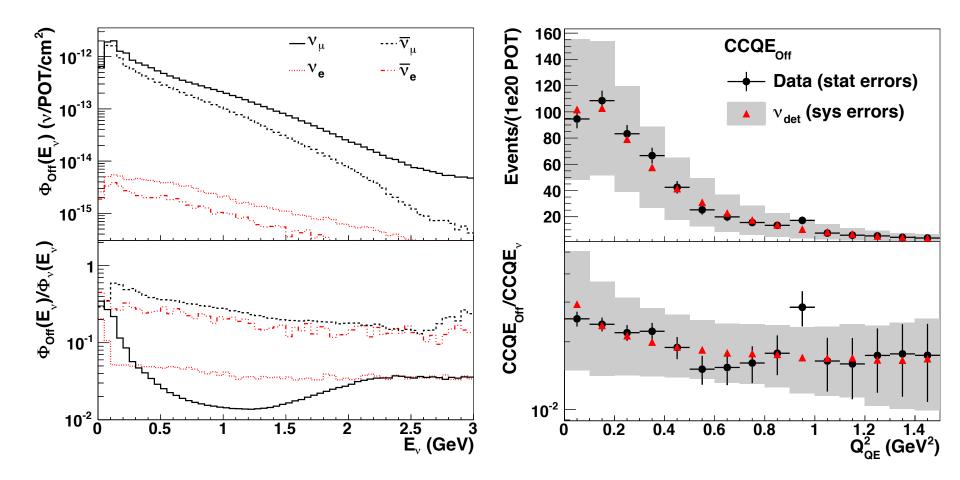
#### **Beam Off-Target Mode**


• Steer beam around target to 50 m beam dump





#### **Beam Off-Target Mode**


• Steer beam around target to 50 m beam dump

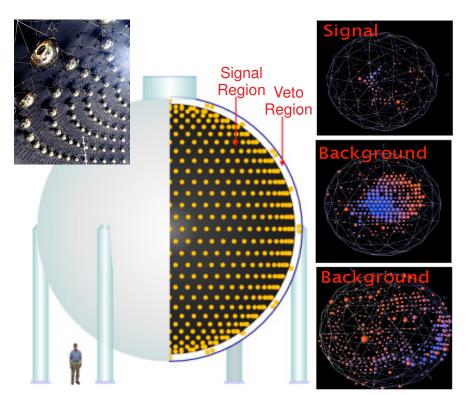




3/23/17

#### Flux Reduction and CCQE Data






3/23/17

R.L. Cooper - U.S. Cosmic Visions

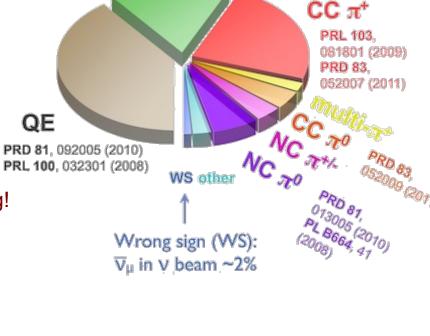
#### The MiniBooNE Detector

- 800 tons pure mineral oil (CH<sub>2</sub>) Cherenkov tracker with some scintillation from trace fluors
- Inner region 1280 × 8" PMTs Outer veto region 240 × 8" PMTs (10% photocathode coverage)
- Excellent PID
- Detector is very well characterized



A.A. Aguilar-Arevalo et al., Nucl. Instrum. Meth. A599 (2009) 28. arXiv:0806.4201 [hep-ex].




## The MiniBooNE Detector

- Run for over 10 years
- 11 oscillation papers
- 14 cross section and flux papers
- Relevant to this work
  - v-mode ( $6.7 \times 10^{20}$  POT) and counting!
  - $\bar{v}$ -mode (11.5 × 10<sup>20</sup> POT)
- 19 Ph.D. Theses

See our website for a full list of publications. http://www-boone.fnal.gov/

3/23/17





NC EL PRD 82, 092005 (2010)

#### NC, CC, QE and All That

- Neutrinos interact via the weak current:
  - −  $W^{\pm}$  → charged current (CC)
  - $Z^0 \rightarrow$  neutral current (NC)
- CC "flips" isospin, e.g., beta decay n  $\rightarrow$  p + e +  $\overline{v}_{e}$
- QE is quasi-elastic; elastic collision on individual nucleon

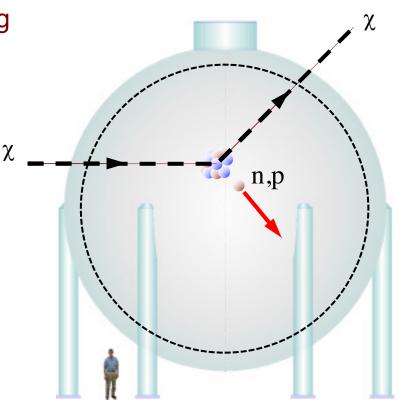
3/23/17



 $v_{\mathsf{X}}$ 

n/p

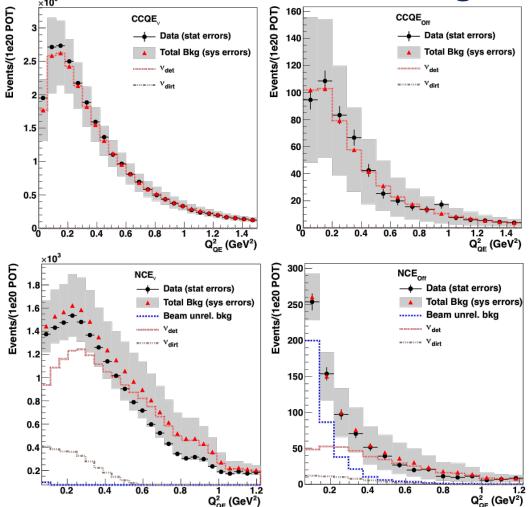
#### NC, CC, QE and All That


- Neutrinos interact via the weak current:
  - −  $W^{\pm}$  → charged current (CC)
  - $Z^0 \rightarrow$  neutral current (NC)
- CC "flips" isospin, e.g., beta decay n  $\rightarrow$  p + e +  $\overline{v}_{e}$
- QE is quasi-elastic; elastic collision on individual nucleon



 $\nu_{\mu}$ 

#### **N-DM Event Selection Cuts**


- 1 Track (single recoil) in beam timing window
- Event is centralized contained
  - - No activity in veto
  - - Fiducialized inner tank
- Signal above hits and visible energy threshold
- PID: Nucleon or electron



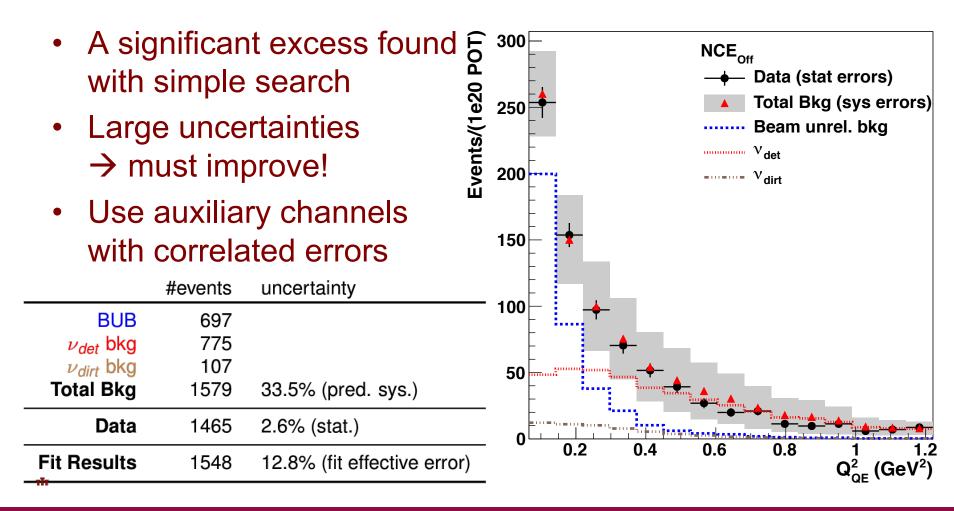


# Improving Errors – Simultaneous Fitting

- 4 distributions
  - NC beam off
  - CC beam off
  - NC beam on
  - CC beam on
- CC ratios help reduce flux uncertainties
- NC ratios help reduce neutrino cross section uncertainties






# Improving Errors – Simultaneous Fitting

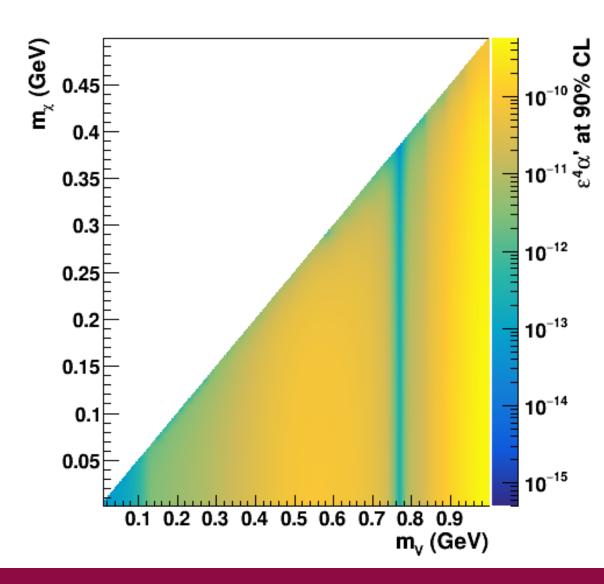
- 4 distributions
  - NC beam off (signal)
  - CC beam off
  - NC beam on
  - CC beam on
- CC ratios help reduce flux uncertainties
- NC ratios help reduce neutrino cross section uncertainties





#### Nucleon NC-Like Events – No Excess

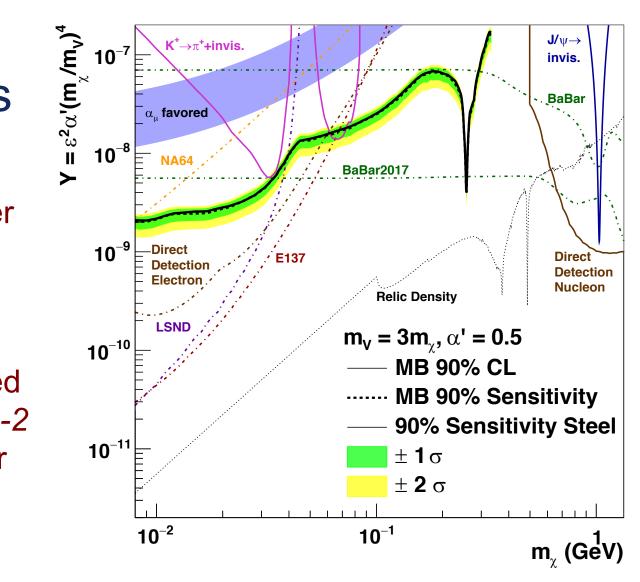





3/23/17

R.L. Cooper - U.S. Cosmic Visions

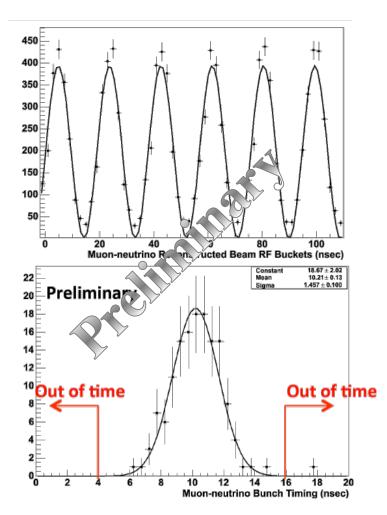
# Confidence Limit Results


- Treating invisible mode m<sub>V</sub> > 2 m<sub>χ</sub>
- Best sensitivity at  $m_V = 769 \text{ MeV},$   $m_\chi = 381 \text{ MeV}$ due to  $\rho$  meson production





# Confidence Limit Results

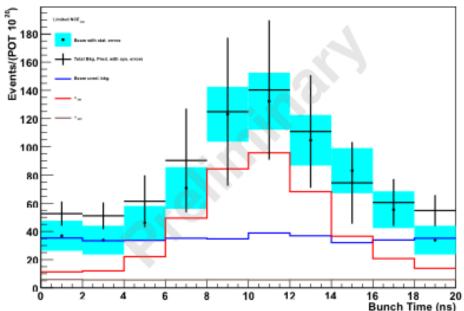

- Many ways to "slice" parameter space
- This parameter choice is rejected as solution for *g-2* anomaly (Vector Portal)





#### Future Analyses for MiniBooNE

- Beam is comprised of 81 nsscale RF pulses
- Massive dark matter will
  propagate sub-luminally
- Characteristic intra-bunch timing improve "high" mass dark matter sensitivity




• Improves higher mass sensitivity



#### Future Analyses for MiniBooNE

- Beam is comprised of 81 nsscale RF pulses
- Massive dark matter will
  propagate sub-luminally
- Characteristic intra-bunch timing improve "high" mass dark matter sensitivity



• Improves higher mass sensitivity

3/23/17



## Future Analyses for MiniBooNE

#### **Electron-DM Elastic**

- MiniBooNE searched for  $v_e$  oscillations
- Excellent electron tracker
- v<sub>e</sub> + e → v<sub>e</sub> + e
  is dominant background
  → clean SM prediction
- Connected to low-energy excess from oscillation search

#### $\Delta$ Resonance ( $\pi^0$ )

- Neutral pion π<sup>0</sup> decays to 2 energetic photons
- Main background to v<sub>e</sub> oscillation → well studied
- Hard to fake with beamunrelated backgrounds
- Estimate 1-10 total beam unrelated background events



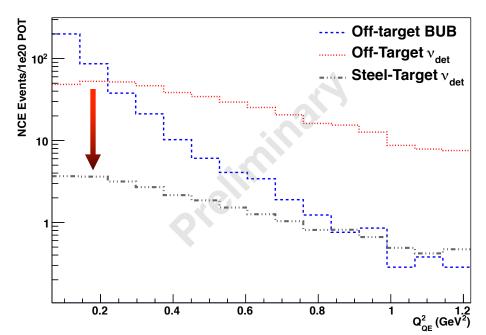
# **Both samples are stats limited**

#### **Electron-DM Elastic**

-1

- MiniBooNE searched for  $v_e$  oscillations
- Excellent electron tracker
- v<sub>e</sub> + e → v<sub>e</sub> + e
  is dominant background
  → clean SM prediction
- Connected to low-energy excess from oscillation search

 Neutral pion π<sup>0</sup> decays to 2 energetic photons


ance (π<sup>0</sup>

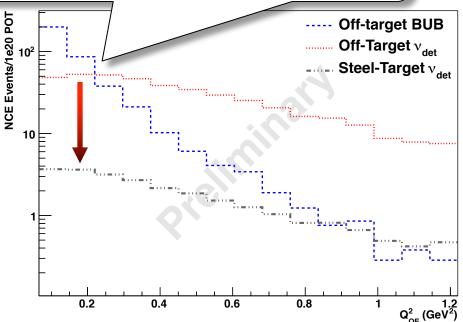
- Main background to v<sub>e</sub> oscillation → well studied
- Hard to fake with beamunrelated backgrounds
- Estimate 1-10 total beam unrelated background events



#### A Dedicated Beam Dump

- The proton beam halo can "scrape" against material and produce neutrinos
- One idea: remove target and focusing horn
- Replace with dedicated steel dump






3/23/17

# A Dedicated Ream Dumn See Richard Van de Water's Talk

"scrape" against material and produce neutrinos

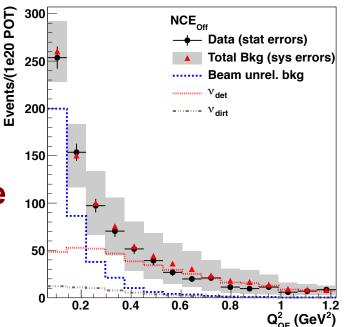
- One idea: remove target and focusing horn
- Replace with dedicated steel dump





## **LESSONS LEARNED**

#### (OR "SO YOU WANT TO SEARCH FOR SUB-GEV DARK MATTER")




3/23/17

R.L. Cooper - U.S. Cosmic Visions

## Backgrounds!

- We sample cosmics with a random trigger → normal operation is 2 Hz but significantly increased to 15 Hz
- We needed better part of a decade of data to decrease beam-related background uncertainty



- Beam interactions in surrounding dirt small (more later)
- Lesson learned: Work very hard on your backgrounds



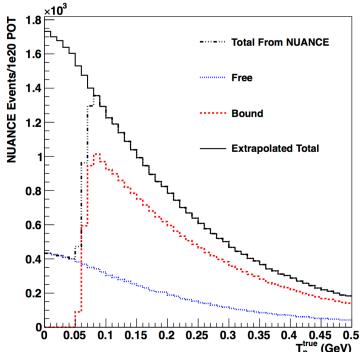
## Why Is Dirt Event Rate So Small?

- Short answer: MiniBooNE is huge!
- Dirt events are most likely neutrons that can penetrate very deep into detector (otherwise they interact in veto and get rejected)
- In this analysis, they will elastically scatter and be indistinguishable from our signal
- <u>Lesson learned</u>: Be big, or handle your neutrons with auxiliary measurements

3/23/17



## Why Is Dirt Event Rate So Small?

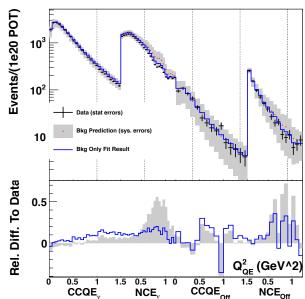

- Short answer: MiniBooNE is huge!
- Dirt events are most likely neutrons that can penetrate very deep into detector (otherwise they interact in veto and get rejected)
- In this analysis, the see Rex and I and be indistinguished
- <u>Lesson learned</u>: Be big, or handle your neutrons with auxiliary measurements

3/23/17



#### **Nuclear Physics**

- Final sensitivity does not reach as far as initial predictions
- Not an experimental issue
- Stripping a nucleus of a proton involves complex nuclear physics: e.g., binding, Pauli blocking, etc.




 Lesson learned: An honest sensitivity estimate must include a decent nuclear model → threshold effects



#### **Correlated Errors and Sidebands**

- Because MiniBooNE has been running for over a decade, there are numerous "sideband" analyses with similar systematic uncertainties
- Don't be afraid to get your hands dirty and deal with correlated errors → yes, they can be difficult



Lesson Learned: Consider every possible sideband
 measurement to reduce the final correlated uncertainties



#### Conclusions

- MiniBooNE combines a high-intensity proton beam in an off-target configuration (DM beam) with a large volume, sensitive neutrino detector to search for sub-GeV dark matter
- Beam dump mode suppresses beam-correlated neutrino backgrounds
- Nucleon-DM elastic scatter analysis is complete (arXiv:1702.02688 submitted to PRL)  $\rightarrow$  e-DM and inelastic  $\pi^0$  channels are underway
- A litany of lessons learned
- Future opportunities at BNB can help MiniBooNE too



#### Conclusions

- MiniBooNE combines a high-intensity proton beam in an off-target configuration (DM beam) with a large volume, sensitive neutrino detector to search for sub-GeV dark matter
- Beam dump mode suppresses beam-correlated neutrino backgrounds
- Nucleon-DM elastic scatter analysis is complete (arXiv:1702.02688 submitte
  See Richard Van de Water's Talk

• A litany or ressons reamed

• Future opportunities at BNB can help MiniBooNE too



#### Thank You!



A.A. Aguilar-Arevalo et al., arXiv:1211.2258 [hep-ex].



# BACKUPS

3/23/17





R.L. Cooper - U.S. Cosmic Visions

#### Previous Beam Dump / Fixed Target Experiments – Proton Beams

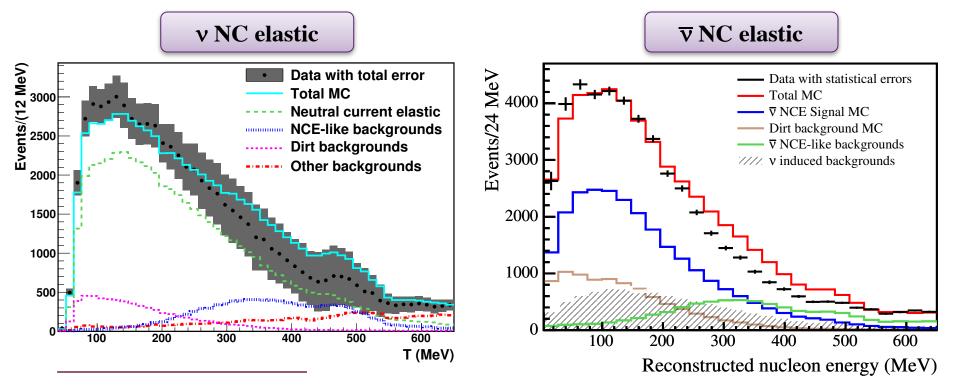
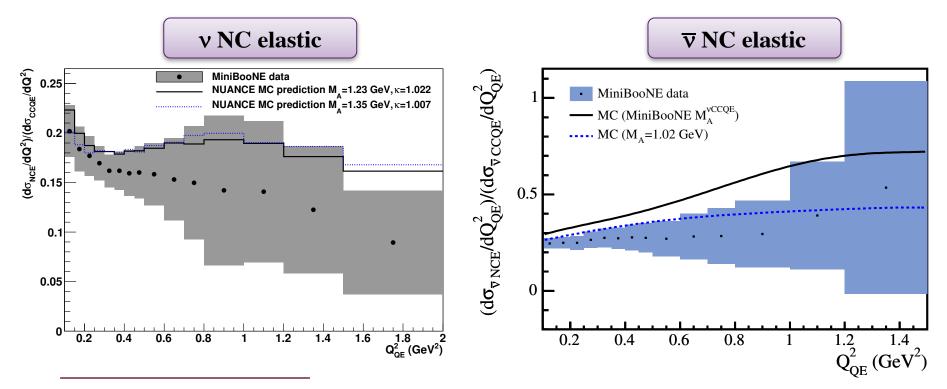

| Experiment      | Location            | approx. Date           | Amount of Beam<br>(10 <sup>20</sup> POT) | Beam Energy<br>(GeV) | Target Mat.     | Ref.     |
|-----------------|---------------------|------------------------|------------------------------------------|----------------------|-----------------|----------|
| CHARM           | CERN                | 1983                   | 0.024                                    | 400                  | Cu              | [16]     |
| PS191           | CERN                | 1984                   | 0.086                                    | 19.2                 | Be              | [17, 18] |
| E605<br>SINDRUM | Fermilab<br>SIN,PSI | 1986                   | $4 \times 10^{-7}$                       | 800                  | Cu              | [19]     |
| u-Cal I         | IHEP Serpukhov      | 1989                   | 0.0171                                   | 70                   | Fe              | [20–22]  |
| LSND            | LANSCE              | 1994-1995<br>1996-1998 | 813<br>882                               | 0.798                | H20, Cu<br>W,Cu | [23]     |
| NOMAD           | CERN                | 1996-1998              | 0.41                                     | 450                  | Be              | [18, 24] |
| WASA            | COSY                | 2010                   |                                          | 0.550                | LH2             | [25]     |
| HADES           | GSI                 | 2011                   | 0.32 pA*t                                | 3.5                  | LH2,No,Ar+KCl   | [26]     |
|                 |                     | 2003-2008              | 6.27                                     |                      | Be              | [27]     |
| MiniBooNE       | Fermilab            | 2005-2012              | 11.3                                     | 8.9                  | Be              | [28]     |
|                 |                     | 2013-2014              | 1.86                                     |                      | Steel           | [29]     |

Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014



#### **Previous NC Elastic Results**

• Previous neutrino running important for spectrum reconstruction




A.A. Aguilar-Arevalo et al., *Phys. Rev.* D82 (2010) 092005. arXiv:1007.4730 [hep-ex]. A.A. Aguilar-Arevalo et al., *Phys. Rev.* D91 (2014) 012004. arXiv:1309.7257 [hep-ex].



#### NC Elastic Scaled to CCQE

• CCQE is a ``standard candle'' to help fix new cross section results



A.A. Aguilar-Arevalo et al., *Phys. Rev.* D82 (2010) 092005. arXiv:1007.4730 [hep-ex]. A.A. Aguilar-Arevalo et al., *Phys. Rev.* D91 (2014) 012004. arXiv:1309.7257 [hep-ex].



#### SBN and MiniBooNE Signal Estimates

• For all configurations, assume 50 m beam dump,  $2 \times 10^{20}$  POT

|                                                  | MiniBooNE | MicroBooNE | SBND   |
|--------------------------------------------------|-----------|------------|--------|
| Distance from 50m Dump (m)                       | 500       | 420        | 50     |
| Analysis Fiducial Mass (tons)                    | 450       | 60         | 40     |
| Efficiency (N or e <sup>-</sup> )                | 30%       | 60%        | 60%    |
| Approximate scaling <sup>1</sup>                 | 1.0       | 0.38       | 17.7   |
| DM-N signal <sup>2</sup>                         | 1,326     | 503        | 23,500 |
| v-N elastic background <sup>3</sup>              | 406+/-80  | 40         | 2,500  |
| DM-e <sup>-</sup> signal <sup>2</sup>            | 4.8       | 1.8        | 85.0   |
| v-e <sup>-</sup> elastic background <sup>3</sup> | ~0.6      | < 0.1      | ~10    |

<sup>1</sup>Sensitivity plots contain other scaling factors, e.g., 1/r<sup>2</sup> distance scaling, energy, etc.

3/23/17

<sup>2</sup>Assume  $M_{\chi} = 50$  MeV, and  $\sigma = 8 \times 10^{-36}$  cm<sup>2</sup>.

<sup>3</sup>Contains beamdump neutrino flux suppression 1/44, POT, efficiency, and  $\cos \theta_{e-beam} > 0.98$  cut

