

## NA64

### Dipanwita Banerjee ETH, Zurich

On behalf of the NA64 collaboration



### NA64 Collaboration

```
D. Banerjee, <sup>11</sup> V. Burtsev, <sup>9</sup> D. Cooke, <sup>11</sup> P. Crivelli, <sup>11</sup> E. Depero, <sup>11</sup> A. V. Dermenev, <sup>4</sup> S. V. Donskov, <sup>8</sup> F. Dubinin, <sup>5</sup> R. R. Dusaev, <sup>9</sup> S. Emmenegger, <sup>11</sup> A. Fabich, <sup>3</sup> V. N. Frolov, <sup>2</sup> A. Gardikiotis, <sup>7</sup> S. N. Gninenko*, <sup>4</sup> M. Hösgen, <sup>1</sup> V. A. Kachanov, <sup>8</sup> A. E. Karneyeu, <sup>4</sup> B. Ketzer, <sup>1</sup> D. V. Kirpichnikov, <sup>4</sup> M. M. Kirsanov, <sup>4</sup> I. V. Konorov, <sup>5</sup> S. G. Kovalenko, <sup>10</sup> V. A. Kramarenko, <sup>6</sup> L. V. Kravchuk, <sup>4</sup> N. V. Krasnikov, <sup>4</sup> S. V. Kuleshov, <sup>10</sup> V. E. Lyubovitskij, <sup>9</sup> V. Lysan, <sup>2</sup> V. A. Matveev, <sup>2</sup> Yu. V. Mikhailov, <sup>8</sup> V. V. Myalkovskiy, <sup>2</sup> V. D. Peshekhonov, <sup>1</sup> D. V. Peshekhonov, <sup>2</sup> O. Petuhov, <sup>4</sup> V. A. Polyakov, <sup>8</sup> B. Radics, <sup>11</sup> A. Rubbia, <sup>11</sup> V. D. Samoylenko, <sup>8</sup> V. O. Tikhomirov, <sup>5</sup> D. A. Tlisov, <sup>4</sup> A. N. Toropin, <sup>4</sup> A. Yu. Trifonov, <sup>9</sup> B. Vasilishin, <sup>9</sup> G. Vasquez Arenas, <sup>10</sup> P. Ulloa, <sup>10</sup> K. Zhukov, <sup>5</sup> and K. Zioutas <sup>7</sup> (The NA64 Collaboration <sup>1</sup>)
```

<sup>1</sup>Universität Bonn, Helmholtz-Institut für Struhlen-und Kernphysik, 53115 Bonn, Germany

<sup>2</sup>Joint Institute for Nuclear Research, 141980 Dubna, Russia

<sup>3</sup>CERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland

<sup>4</sup>Institute for Nuclear Research, 117312 Moscow, Russia

<sup>5</sup>P.N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia

<sup>6</sup>Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

<sup>7</sup>Physics Department, University of Patrus, Patrus, Greece

<sup>8</sup>State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia

<sup>9</sup>Tomsk Polytechnic University, 634050 Tomsk, Russia

<sup>10</sup>Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

<sup>11</sup>ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland

# NA64: Search for dark sector physics in missing energy events

- Approved in March 2016 for the A'—> invisible decay search with electron beam.
- Two runs in 2016 —>focus on the A' parameter space suggested for the  $(g-2)_{\mu}$  anomaly.
- First results from the two weeks beam time in July'2016 published, most of the  $(g-2)_{\mu}$  favoured parameter space excluded.
- 10 times more statistic acquired in October'2016. Analysis in progress.



Key Features of the setup:



# NA64: Search for dark sector physics in missing energy events



NA64 —> fixed target experiment combining the active beam dump technique with missing energy measurement searching for invisible decays of massive A' produced in the reaction eZ—> eZA' of electrons scattering off a nuclei (A,Z), with a mixing strength  $10^{-6} < \varepsilon < 10^{-3}$  and masses  $M_{A'} \sim$  sub-GeV range.

**100 GeV electrons** dumped against an ECAL, a sandwich of lead and scintillators (34  $X_0$ ), to produce massive A' through scattering with the heavy nuclei.

The typical signature for a signal will be missing energy in the ECAL and no activity in the the VETO and HCAL.

Background from hadrons, muons and low energy electrons must be rejected upstream.

NA64: Search for dark sector physics in missing energy events





#### Key Features of the setup:

- High energy beam to trigger the reaction: 100
   GeV e- beam from the CERN SPS.
- Max intensity ~ 5 x 10<sup>6</sup> e<sup>-</sup>/ spill.
- Typically 2 spills/min
- Main impurities of H4 beam: π–, low energy e– (~1%) μ– and K– (≤0.1%)







### Key Features of the setup:

• High hermeticity: ECAL - PbSc sandwich, 38×38×445 mm³ (~40 X0) with WLS fiber inserted in spiral ~ 9%/√(E[GeV]) energy resolution





### Key Features of the setup:

• High hermeticity: 4 HCAL FeSc sandwich modules, 60×60×150 cm3 (~7 λ for each module) with WLS fiber and 60%/√(E[GeV] energy resolution.





### Key Features of the setup:

e<sup>-</sup>, 100 GeV

 Measure momentum: Tracking system made of 4 MicroMegas modules and 2 GEM detectors together with 2 MPBL magnet ~7 T· m to measure momentum of incoming particles.





### Key Features of the setup:

Measure momentum:
 Reconstructed momentum







### Key Features of the setup:

• Suppress hadronic background: Synchrotron radiation tagging system (BGO/PbSc sandwich calorimeter) to reject  $\mu$ –, $\pi$ – and K–decay in flight after interaction with ECAL.





arXiv: 1703.05993

## July' 2016 Run

## July 2016 results

### No selection cut applied



 $2.75 \times 10^9$  electrons on target with beam intensity of  $1.4 \times 10^6$  e<sup>-</sup>/ 4.8 s spill for a ~ 2 cm diameter beam:

- Region I —> rare QED dimuon production e<sup>-</sup> Z → e<sup>-</sup> Zγ; γ → μ<sup>+</sup>μ<sup>-</sup>, characterised by the energy of ≈ 10 GeV deposited by the dimuon pair in the HCAL.
- Region II —> SM events from the hadron electroproduction in the target:  $E_{ECAL} + E_{HCAL} \simeq 100$  GeV.
- Region III —> few ~ 10<sup>-2</sup> mostly pile-up of e– and beam hadrons.

## July 2016 results



#### Event Selection Criteria:

- Pile up suppression using timing information.
- Selecting clean incoming track (angle + single hit in all 4 MMs) with correct momentum.
- Hadron suppression with synchrotron radiation.
- Events with shower profile as expected.
- No activity in Veto 2.

Selection cuts applied

## July 2016 results



- No event observed in the signal box from the July'2016 data.
- New limits set on the  $\gamma$ -A' mixing strength.

### New BaBar Results



Explanation of  $(g-2)_{\mu}$  with invisible A' is excluded.

## October 2016 run and prospects



Projected Sensitivity

- October 2016 run :
- ▶ Good performance at 5x10<sup>6</sup> e-/spill
- → 4x10<sup>10</sup> eot collected.
- Data analysis in progress.
- 2017 run
- Improved e- tagging: tracker+SRD
- ▶ Tests at intensity (7–8)x10<sup>6</sup> e-/spill
- Goal  $(2-3)x10^{11}$  eot.

## Summary

The conceptual idea of NA64 is to search for dark sector physics in missingenergy events with an active beam dump experiment.

#### The run 2016:

- All detectors performed quite efficiently at high intensity and showed positive results for being able to run at even higher flux.
- The July 2016 run set new limits on the  $\gamma$ -A' mixing and explanation of the  $(g-2)_{\mu}$  anomaly with invisible A' is excluded.
- October 2016 data analysis in progress.

#### The run 2017:

- Plan to collect up to few 10<sup>11</sup> electrons on target for the invisible channel and cover significant area of the A' parameter space.
- Upgrades to the tracking system as well as to the synchrotron radiation detectors are foreseen.
- We also intend to switch to visible mode to collect few 10<sup>10</sup> eot (> 1 week ) to address the Be8 decay anomaly which could be explained by a 17 MeV boson.

## Physics Prospects

| Process                                                                                                                            | New Physics                                                                                                   | Sensitivity                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1. $e^{-}Z -> e^{-}Z + E_{miss}$                                                                                                   |                                                                                                               |                                                                                                                                |
| <ul> <li>A´-&gt; e+e⁻</li> <li>A´-&gt; invisible</li> <li>alps</li> <li>milli-Q</li> </ul>                                         | Dark Sector: Dark Photons and DM New light states (V,S) weakly coupled to e-  *Be excess                      | $10^{-3} < \epsilon < 10^{-6}$ $M_{A^{'}} \sim \text{sub-GeV}$ $mQ < 10^{-5} - 10^{-7} \text{ e}$ $M_{mQ} \sim \text{sub-GeV}$ |
| 2. μ <sup>-</sup> Z->μ <sup>-</sup> Z+ E <sub>miss</sub>                                                                           |                                                                                                               |                                                                                                                                |
| <ul> <li></li></ul>                                                                                                                | $(g-2)_{\mu}$ anomaly,<br>New $Z_{\mu}$ from $L_{\mu}$ - $L_{\tau}$ gauged<br>symm., scalars coupled to $\mu$ | $\alpha_{\mu}$ < 10 <sup>-11</sup> -10 <sup>-9</sup> $\sigma_{\mu\tau}/\sigma_{\mu}$ < 10 <sup>-9</sup> -10 <sup>-8</sup>      |
| 3. $\pi(K)p-> M^0n + E_{miss}$                                                                                                     |                                                                                                               |                                                                                                                                |
| <ul> <li>K<sub>L</sub>-&gt; invisible</li> <li>K<sub>S</sub>-&gt; invisible</li> <li>π<sup>0</sup>, η,η´-&gt; invisible</li> </ul> | CP, CPT symmetry<br>Bell-Steinberger Unitarity,<br>new WC particles:<br>NHL, φφ, VV                           | Br <10 <sup>-8</sup> -10 <sup>-6</sup> ,<br>Complementary to K-> $\pi\nu\nu$<br>Br< 10 <sup>-8</sup> -10 <sup>-7</sup>         |
| 4. pA -> Z´+ E <sub>miss</sub>                                                                                                     |                                                                                                               |                                                                                                                                |
| ◊ leptophobic Z´                                                                                                                   | ~ GeV DM                                                                                                      | $\sigma_{Z'} < 10^{-7} - 10^{-8} / p$                                                                                          |

## Thank You!!