NA64 ### Dipanwita Banerjee ETH, Zurich On behalf of the NA64 collaboration ### NA64 Collaboration ``` D. Banerjee, ¹¹ V. Burtsev, ⁹ D. Cooke, ¹¹ P. Crivelli, ¹¹ E. Depero, ¹¹ A. V. Dermenev, ⁴ S. V. Donskov, ⁸ F. Dubinin, ⁵ R. R. Dusaev, ⁹ S. Emmenegger, ¹¹ A. Fabich, ³ V. N. Frolov, ² A. Gardikiotis, ⁷ S. N. Gninenko*, ⁴ M. Hösgen, ¹ V. A. Kachanov, ⁸ A. E. Karneyeu, ⁴ B. Ketzer, ¹ D. V. Kirpichnikov, ⁴ M. M. Kirsanov, ⁴ I. V. Konorov, ⁵ S. G. Kovalenko, ¹⁰ V. A. Kramarenko, ⁶ L. V. Kravchuk, ⁴ N. V. Krasnikov, ⁴ S. V. Kuleshov, ¹⁰ V. E. Lyubovitskij, ⁹ V. Lysan, ² V. A. Matveev, ² Yu. V. Mikhailov, ⁸ V. V. Myalkovskiy, ² V. D. Peshekhonov, ¹ D. V. Peshekhonov, ² O. Petuhov, ⁴ V. A. Polyakov, ⁸ B. Radics, ¹¹ A. Rubbia, ¹¹ V. D. Samoylenko, ⁸ V. O. Tikhomirov, ⁵ D. A. Tlisov, ⁴ A. N. Toropin, ⁴ A. Yu. Trifonov, ⁹ B. Vasilishin, ⁹ G. Vasquez Arenas, ¹⁰ P. Ulloa, ¹⁰ K. Zhukov, ⁵ and K. Zioutas ⁷ (The NA64 Collaboration ¹) ``` ¹Universität Bonn, Helmholtz-Institut für Struhlen-und Kernphysik, 53115 Bonn, Germany ²Joint Institute for Nuclear Research, 141980 Dubna, Russia ³CERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland ⁴Institute for Nuclear Research, 117312 Moscow, Russia ⁵P.N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia ⁶Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ⁷Physics Department, University of Patrus, Patrus, Greece ⁸State Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia ⁹Tomsk Polytechnic University, 634050 Tomsk, Russia ¹⁰Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile ¹¹ETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland # NA64: Search for dark sector physics in missing energy events - Approved in March 2016 for the A'—> invisible decay search with electron beam. - Two runs in 2016 —>focus on the A' parameter space suggested for the $(g-2)_{\mu}$ anomaly. - First results from the two weeks beam time in July'2016 published, most of the $(g-2)_{\mu}$ favoured parameter space excluded. - 10 times more statistic acquired in October'2016. Analysis in progress. Key Features of the setup: # NA64: Search for dark sector physics in missing energy events NA64 —> fixed target experiment combining the active beam dump technique with missing energy measurement searching for invisible decays of massive A' produced in the reaction eZ—> eZA' of electrons scattering off a nuclei (A,Z), with a mixing strength $10^{-6} < \varepsilon < 10^{-3}$ and masses $M_{A'} \sim$ sub-GeV range. **100 GeV electrons** dumped against an ECAL, a sandwich of lead and scintillators (34 X_0), to produce massive A' through scattering with the heavy nuclei. The typical signature for a signal will be missing energy in the ECAL and no activity in the the VETO and HCAL. Background from hadrons, muons and low energy electrons must be rejected upstream. NA64: Search for dark sector physics in missing energy events #### Key Features of the setup: - High energy beam to trigger the reaction: 100 GeV e- beam from the CERN SPS. - Max intensity ~ 5 x 10⁶ e⁻/ spill. - Typically 2 spills/min - Main impurities of H4 beam: π–, low energy e– (~1%) μ– and K– (≤0.1%) ### Key Features of the setup: • High hermeticity: ECAL - PbSc sandwich, 38×38×445 mm³ (~40 X0) with WLS fiber inserted in spiral ~ 9%/√(E[GeV]) energy resolution ### Key Features of the setup: • High hermeticity: 4 HCAL FeSc sandwich modules, 60×60×150 cm3 (~7 λ for each module) with WLS fiber and 60%/√(E[GeV] energy resolution. ### Key Features of the setup: e⁻, 100 GeV Measure momentum: Tracking system made of 4 MicroMegas modules and 2 GEM detectors together with 2 MPBL magnet ~7 T· m to measure momentum of incoming particles. ### Key Features of the setup: Measure momentum: Reconstructed momentum ### Key Features of the setup: • Suppress hadronic background: Synchrotron radiation tagging system (BGO/PbSc sandwich calorimeter) to reject μ –, π – and K–decay in flight after interaction with ECAL. arXiv: 1703.05993 ## July' 2016 Run ## July 2016 results ### No selection cut applied 2.75×10^9 electrons on target with beam intensity of 1.4×10^6 e⁻/ 4.8 s spill for a ~ 2 cm diameter beam: - Region I —> rare QED dimuon production e⁻ Z → e⁻ Zγ; γ → μ⁺μ⁻, characterised by the energy of ≈ 10 GeV deposited by the dimuon pair in the HCAL. - Region II —> SM events from the hadron electroproduction in the target: $E_{ECAL} + E_{HCAL} \simeq 100$ GeV. - Region III —> few ~ 10⁻² mostly pile-up of e– and beam hadrons. ## July 2016 results #### Event Selection Criteria: - Pile up suppression using timing information. - Selecting clean incoming track (angle + single hit in all 4 MMs) with correct momentum. - Hadron suppression with synchrotron radiation. - Events with shower profile as expected. - No activity in Veto 2. Selection cuts applied ## July 2016 results - No event observed in the signal box from the July'2016 data. - New limits set on the γ -A' mixing strength. ### New BaBar Results Explanation of $(g-2)_{\mu}$ with invisible A' is excluded. ## October 2016 run and prospects Projected Sensitivity - October 2016 run : - ▶ Good performance at 5x10⁶ e-/spill - → 4x10¹⁰ eot collected. - Data analysis in progress. - 2017 run - Improved e- tagging: tracker+SRD - ▶ Tests at intensity (7–8)x10⁶ e-/spill - Goal $(2-3)x10^{11}$ eot. ## Summary The conceptual idea of NA64 is to search for dark sector physics in missingenergy events with an active beam dump experiment. #### The run 2016: - All detectors performed quite efficiently at high intensity and showed positive results for being able to run at even higher flux. - The July 2016 run set new limits on the γ -A' mixing and explanation of the $(g-2)_{\mu}$ anomaly with invisible A' is excluded. - October 2016 data analysis in progress. #### The run 2017: - Plan to collect up to few 10¹¹ electrons on target for the invisible channel and cover significant area of the A' parameter space. - Upgrades to the tracking system as well as to the synchrotron radiation detectors are foreseen. - We also intend to switch to visible mode to collect few 10¹⁰ eot (> 1 week) to address the Be8 decay anomaly which could be explained by a 17 MeV boson. ## Physics Prospects | Process | New Physics | Sensitivity | |--|---|--| | 1. $e^{-}Z -> e^{-}Z + E_{miss}$ | | | | A´-> e+e⁻ A´-> invisible alps milli-Q | Dark Sector: Dark Photons and DM New light states (V,S) weakly coupled to e- *Be excess | $10^{-3} < \epsilon < 10^{-6}$ $M_{A^{'}} \sim \text{sub-GeV}$ $mQ < 10^{-5} - 10^{-7} \text{ e}$ $M_{mQ} \sim \text{sub-GeV}$ | | 2. μ ⁻ Z->μ ⁻ Z+ E _{miss} | | | | | $(g-2)_{\mu}$ anomaly,
New Z_{μ} from L_{μ} - L_{τ} gauged
symm., scalars coupled to μ | α_{μ} < 10 ⁻¹¹ -10 ⁻⁹ $\sigma_{\mu\tau}/\sigma_{\mu}$ < 10 ⁻⁹ -10 ⁻⁸ | | 3. $\pi(K)p-> M^0n + E_{miss}$ | | | | K_L-> invisible K_S-> invisible π⁰, η,η´-> invisible | CP, CPT symmetry
Bell-Steinberger Unitarity,
new WC particles:
NHL, φφ, VV | Br <10 ⁻⁸ -10 ⁻⁶ ,
Complementary to K-> $\pi\nu\nu$
Br< 10 ⁻⁸ -10 ⁻⁷ | | 4. pA -> Z´+ E _{miss} | | | | ◊ leptophobic Z´ | ~ GeV DM | $\sigma_{Z'} < 10^{-7} - 10^{-8} / p$ | ## Thank You!!