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!

• Thermal Relic: DM in thermal 
and chemical equilibrium with 
SM plasma at high 
temperatures (=early times)	

• Predictive:    DM-SM Scattering 
cross section        decoupling 
time       present density 	

Thermal Relic DM

• “Non-Relativistic” Decoupling: due to exponential drop in 
equilibrium density of DM particle once      	

• Relic density:	

• WIMP Miracle:             when                    (                       ) 
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“Light” Thermal Relic

!

• No definite discovery of weak-scale new physics so far 
motivates thinking about DM at different mass scales	

• What if the DM particle mass is at ~QCD scale? 	

• Confining dynamics at ~QCD scale in the dark sector appears 
naturally in “mirror SM”/“twin-Higgs” models	

• “Dark pions” can be a natural DM candidate, if stable 	

• Can adjust mediator mass and couplings to obtain the correct 
relic density via annihilation to SM, but no “miracle”!

SM
DS
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The SIMP Miracle
• A big “WIMP assumption”: DM annihilation to SM is the only 

relevant process	

• Obviously, only DM-number changing processes are relevant*	

• What about non-DM-number-conserving self-interactions? 
(NB: in QCD pion number not conserved, e.g. WZW term) 	

• Strongly Interacting Massive Particle:              process 
remains in equilibrium after                       decouples	

• Relic density determined by               	

• SIMP Miracle:             when       	

• “SIMP Assumption”: Elastic SM-DM scattering maintains the 
two sectors at the same temperature until freeze-out     

[Hochberg, Kuflik, 
Volansky, Wacker, ’14]
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!

• Equilibrium NR number 
density:	

• SIMP follows the trajectory due 
to 3-to-2 self-annihilations	

• This process releases kinetic 
energy:	

!

Riding Down the Hill

• Elastic SM-DM scattering must be fast enough to transfer this 
energy to the SM plasma, allow them to remain at same T	

!

• “Elastic Decoupling”:

annihilations to SM
decouple here

self-annihilations 
decouple here
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Beware: Cannibals!
• Self-annihilations decoupling:                           @ 	

• SIMP scenario: freeze-out before kinetic decoupling                	

• Our work: what if             ?    	

• At          , DM gas is in chemical equilibrium with no chemical 
potential (due to active self-annihilations), BUT 	

• DM temperature determined by DM entropy conservation:	

!

• “Cannibal” phase: Kinetic energy released in self-annihilations 
is used to “keep warm” in an expanding Universe	

• DM density changes as log(scale factor) during this phase!

[Carlson, Machacek, 
Hall, ’92]
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Thermal History

• Eventually, self-annihilations decouple, DM density frozen-in
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Meet the ELDER

• Relic density:
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ELastically DEcoupling 	
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Non-perturbative
self-interactions

Observational
constraints
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Observational Constraints

• DM coupling to photons only assumed here	

• Similar constraints if DM coupling is primarily to electrons; 
weaker constraints if coupled to neutrinos (only 3 choices!)

WMAPWMAP

Planck
Neff

Planck
Neff

SupernovaSupernova

ELDERELDER

SIMPSIMP

10-2 10-1

10-8

10-7

CMB spectrum distortions from 

Entropy ejected into
photons/electrons
after neutrinos decouple

Must trap    

in the core    

[similar bound from indirect detection]
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Explicit Model

• Consider a simple renormalizable model:	

!

• Global U(1) ensures stability of the DM particle     , but allows 
3-to-2 self-annihilations: 	

!

!

• DM can be coupled to electrons via dark photon exchange:	

!

• Resonant enhancement of self-annihilation for 

[a la Choi, Lee, 1601.0356]
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Figure 1: Feynman diagrams for ��� ! �⇤�⇤.

Z 0 gauge boson contributes dominantly to the kinetic scattering between SIMP dark matter
and the SM charged leptons [2, 3, 4].

First, taking m
S

> 2m
�

, the singlet scalar S decays into a pair of dark matter �. In
this case, while the 2 ! 2 (semi-) annihilation processes in hidden sector are kinematically
forbidden, the 3 ! 2 process, ��� ! �⇤�⇤, is a dominant annihilation process. But, the
dark Higgs or the dark gauge boson does not contribute to the processes even through
intermediate states, unlike the Z

3

case [3]. Moreover, the 3 ! 2 process for � is made
possible due to the exchanges of the scalar S as shown in Fig. 1.

In the non-relativistic limit for dark matter, the squared amplitude for the ��� ! �⇤�⇤
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Then, for CP conservation, the DM number density is given by n
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n
�

= n
�

⇤ , and the e↵ective 3 ! 2 annihilation cross section is obtained as
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We note that all the Z
5

-invariant quartic couplings between � and S participate in the
��� ! �⇤�⇤ process.

Assuming that the dark Higgs and dark gauge boson are heavy enough and ignoring
the mixing quartic coupling between � and dark Higgs field, we also obtain the 2 ! 2
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case [3]. Moreover, the 3 ! 2 process for � is made
possible due to the exchanges of the scalar S as shown in Fig. 1.
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We note that all the Z
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-invariant quartic couplings between � and S participate in the
��� ! �⇤�⇤ process.

Assuming that the dark Higgs and dark gauge boson are heavy enough and ignoring
the mixing quartic coupling between � and dark Higgs field, we also obtain the 2 ! 2
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Relic Density

• Viable ELDER DM for                                       - nice target 
for dark photon searches      	

• ELDER target is the lower boundary of the SIMP range:               

Non-perturbative
self-interactions

Observational
constraints
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Elastic Self-Interaction

• Constraint (Bullet cluster, halo shapes): 	

• Constraint is stronger at low DM masses, becomes difficult 
to satisfy for                     in our model 	

• Similar lower bound on        from CMB (       bound), BBN

!

• Strong DM self-annihilation 
would generically be 
accompanied by strong DM 
elastic self-scattering	

• Small-scale simulation “issues” 
possibly hint at	

!
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ELDER in Dark Photon Searches

• Since                , the Dark Photon decays invisibly to DM pairs	

• A factor of 10 improvement in sensitivity would explore 
preferred SIMP/ELDER parameter space 12
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FIG. 3: Bottom: signal fit for mA0 = 6.21 GeV to a com-
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the frequentist profile-likelihood limits [29]. Figure 5
compares our results to other limits on " in channels
where A0 is allowed to decay invisibly, as well as to the
region of parameter space consistent with the (g � 2)µ
anomaly [5]. At each value of mA0 we compute a limit
on " as a square root of the Bayesian limit on "2 from
Fig. 4. Our data rules out the dark-photon coupling as
the explanation for the (g�2)µ anomaly. Our limits place
stringent constraints on dark-sector models over a broad
range of parameter space, and represent a significant im-
provement over previously available results.

We are grateful for the excellent luminosity and ma-
chine conditions provided by our PEP-II colleagues, and
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ELDER in Direct Detection

• Relic density constraint completely fixes direct detection cross 
section as a fn. of mass! Interesting range for future experiments.	

• Again, the ELDER curve is the lower boundary of the SIMP region

future sensitivities 
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[from Dark Sectors 2016 report]
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Conclusions

• Considered a thermal relic with ~QCD-scale mass, 
number-changing self-annihilation process	

• Two regimes: SIMP and ELDER (with unusual thermal 
history involving “cannibalization” epoch)	

• ELDER relic abundance determined dominantly by 
the cross section of elastic scattering of DM on SM 
(not a number-changing process!)	

• Interesting predictions for DM direct detection and 
dark photon searches
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