DARK MATTER AT THE LHC

Marco Trovato

On Behalf of CMS and ATLAS

U.S. Cosmic Visions: New Ideas in Dark Matter 23-25 March 2017

Why DM at the LHC?

• Different experiments probe different (DM) parameter space

- Colliders: Iow masses (~ 10 MeV?), Spin 0/1 (P +1/-1)
 Direct Detection (DD): high masses (~10 GeV), Spin 0 (P +1), Spin 1 (P +1/-1)

• Indirect Detection (ID): large range (100 GeV -...TeV), Spin 0 (P - I)

A possible discovery will have to be cross checked in more than one experiment

• different experiments are sensitive to different DM properties (ie: nature of the mediator)

DM searches at the LHC

• Typical signatures:

• Rely on simplified models (arXiv: 1507.00966)

to interpret the results

- Pair-produced DM Dirac fermions, χ
- DM is stable on collider timescales
- DM is non-interacting with the detector
- Couplings: vector/axial/scalar/pseudo-scalar
- Minimal Flavor violation
- Minimal Decay width: couples only to SM and χ

• Minimal set of parameters: g_q , g_X , M_{MED} , M_X

Mono-Jet/Mono-W/Z

- Selection: MET>200 GeV, >= I jet, lepton/b/ γ veto
- Categorization:
 - mono-W/Z: MET, $p_T^{AK8} > 250$ GeV, jet mass [65,105] GeV, $\tau_2 / \tau_1 < 0.6$
 - au_N are indicative of a N-prong decay
 - mono-jet: all other events w/ pTAK4 > 100 GeV, MET>200 GeV
- Background and Signal predictions are fitted to data in MET
 - 5x2 control regions (CRs) plus 1x2 signal regions (SR) simultaneously fitted

2016 I CHIEP USES

Mono-Jet/Mono-W/Z

No excess observed

Exclusions (@ 95% CL) :

Model	M _{MED} (GeV)	M _X (GeV)	
Vector	<1950	<750	
Axial-Vector	<1950	<550	q g x x g y x x y x x x x
Scalar	-	-	
Pseudo-Scalar	<430	<170	g q W/Z W/Z q

2016 ICHEP Clara

Mono-Jet/Mono-W/Z

- Reinterpret as invisible Higgs:
 BR < 0.44 (exp: 0.56)
- Recast to limits on SI/SD DM nucleon cross sections (arXiv:1603.04156)

Mono-Z

- 2016 ICHEP CLAR Selection: MET>100 GeV, $p_T^{ee/\mu\mu}$ >60 GeV, $\Delta \phi$ (ee/ $\mu\mu$,MET)>2.8, $|p_T^{ee/\mu\mu} - MET|/p_T^{ee/\mu\mu} < 0.4$, >1 jet/b/>2 lep veto
- Background and signal predictions are fitted to data in MET
 - background shapes from MC @ NLO
 - (pre-fit) normalization for :
 - WZ/ZZ: from MC @ NNLO-QCD, NLO-EWK
 - non-resonant background (WW, tt, tW, Z+jets) from eµ CR

- 2016 ICHEP CAR No observed excess: M_{MED} <~400 GeV excluded (vector/axial)
- Recast to limits on SI/SD DM nucleon cross sections

12.9 fb⁻¹ (13 TeV)

 $\sigma/\sigma_{\text{theo}}=1$

400

PICO-60

PICO-2L

10

Super-K τ⁺τ

ce Cube τ^+

600

 Expected Limit ----- Expected $\pm 1\sigma$

Observed Limit

Theory Uncertainty

Axial-vector mediator-

Dirac fermion γ

 $g_{\gamma} = 1, g_{\alpha} = 0.25$

800

-vector mediator, Dirac fermion χ , $g_n=0.25$, $g_{-}=1$ (13 TeV, 12.9 fb⁻¹)

10²

1000

m [Go\/]

Spin Dependen

90% CL

 m_{γ} [GeV]

10³

 $\sigma_{\rm obs}/\sigma_{\rm th}$

1 95% C.L. observed limit on

-

10-1

 10^{-2}

1200

Mono-H(bb)

- Selection: MET>150 GeV, lepton veto
- Categorization
 - <u>resolved</u>: MET<500, at least two R=0.4 jets;
 - <u>boosted</u>: MET>500, at least one R=1.0 jets w/ at least two track-jets (R=0.2)
 - substructure variables (e.g: τ_2 / τ_1) use to further reject multijet/top background
- Background and signal predictions are fitted to data in di-jet mass
 - W/Z+jets, multi-jet backgrounds initially estimated from dedicated CRs
 - Other backgrounds from simulation

• No observed excess: $M_{MED} < ~ 0.7 \text{ TeV}$ excluded (vector)

 \bar{q}

q

Mono- $H(\gamma\gamma)$

- 2015×2016 ICHEP CARA Selection: MET>150 GeV, $p_T^{\gamma} > 25$ GeV, $M_{\gamma\gamma}$ in [105,160] GeV
- 4 Categories defined based on $p_T^{\gamma\gamma}$ and MET significance
- Background predictions are fitted to data in M_{YY}
 - one fit per region
 - major backgrounds: SM $\gamma\gamma$, γ +jet, $W\gamma/\gamma\gamma$, Higgs
 - normalization/shape of Higgs $m_{\gamma\gamma}$ from MC

AS-CONF-2016-087

tt+DM

- Direct probe for Yukawa couplings of spin-0 mediators
- Selection:
 - <u>all-hadronic</u>: MET>200
 - <u>semi-leptonic</u>: MET>160 GeV
 - <u>di-leptonic</u>: MET>50 GeV
 - <u>all channels</u>: b-tag and min $\Delta \phi$ (jet,MET) requirements
 - <u>leptonic channels</u>: leptons are identified is pT>30 GeV
- All-hadronic/semi-leptonic (EXO-16-005)
 - Dominant background: SM ttbar with one less hadronic top
 - Categorization: employ a resolved top tagger (RTT) to improve the significance of the search
- Di-leptonic (<u>EXO-16-028</u>):
 - Major background: SM ttbar

2.2 fb⁻¹ (13 TeV)

resolved top tagger discriminant

- Signal and background fitted to data in MET
 - All-hadronic/semi-leptonic: simultaneously fitting 3 SRs + 9 CRs,
 - di-leptonic: simultaneously fitting 3 SRs
 - Drell-Yan and fake-lepton backgrounds estimated from CRs,
 - other backgrounds from MC

tt+DM

• First expected exclusion of low-mass scalar mediators

- Observed exclusion for M_{MED}=10 GeV, M_X=1 GeV (g_{SM}=g_{DM}=1) in all-hadronic/ semi-leptonic only
- Expected/Observed exclusion improved/worsened when adding di-leptonic
 - cause: upward data fluctuations in low-MET region

Dijet searches (high mass)

- 2015×2016 ICHEP CARA Selection: two energetic jets ($P_T > 440, 60 \text{ GeV}$) w/ small rapidity separation, veto on extra jets
- Background and signal predictions fitted to data in di-jet mass
 - a proper functional form (cross-checked in simulation) is used for the SM background
- Exclusions down to $M_{Z'} \sim 1.5 \text{ TeV}$
 - w/ trigger level analyses ("TLA") mass reach extended down to ~0.5 TeV (ATLAS-CONF-2016-030)

Dijet searches (low mass)

- Look for resonance recoiling against high-PT γ /jet
 - X+ γ : E_T $^{\gamma}$ > 150 GeV, two jets w/ P_T>25 GeV and small rapidity separation
 - X+j: $P_T^J > 430$ GeV, two extra jets w/ $P_T > 25$ GeV and small rapidity separation
- Exclusions down to:
 - M_{Z'} ~ 200 GeV (X+γ),
 - M_{Z'} ~ 350 GeV (X+j)
 - inefficiencies at MZ' < 350 GeV are due to jet merging</p>

2015×2016 ICLIEB CARA

ATLAS DM Summary

- 2015×2016 1CHEP data lepto-phobic Z' dijet results reinterpreted in terms of DM spin-1 mediators
 - Z' width depends on $(M_{MED,} M_X)$
- and compared to complementary **MET+X** results

Dijet limits are very strong for (relatively) large g_q , complementary to MET+X limits at lower g_q

CMS DM Summary

 Mono-Jet and tt+DM (all-hadronic/semileptonic) compared in term of scalar/pseudo-scalar models
 Recast of (MET+X) M_{MED} Vs M_X limits in terms of DM-

nucleon cross sections

Collider results provide the most stringent limits up to $M\chi \sim 100$ GeV

2015×2016 1CHEP Clara

Conclusions

• Remarkable amount of results at colliders:

[see backup for more]

- from MET+X searches
- and recast of resonance searches

Results explored new phase space

- Multi-TeV spin-1 mediators
- Low-Mass spin-0 mediators
- Re-interpretation in terms of DM-nucleon cross sections confirmed the complementarity between colliders and DD(/ ID) experiments
- Unfortunately no signs of DM yet... :- (
- Hunt continues with way more data :-)

List of CMS/ATLAS DM searches

K. Hahn Aspen 2017 talk

Х	Dataset	Documentation
jet or hadronic V	2016, 12.9 fb-1	EXO-16-037, 1703.01651
photon	2016, 12.9 fb-1	EXO-16-039
Z(II)	2016, 12.9 fb-1	EXO-16-038
Higgs (үү)	2015, 2.3 fb-1	EXO-16-011
Higgs (bb), with yy combo	2015, 2.3 fb-1	EXO-16-012
tt (hadronic, semileptonic)	2015, 2.2 fb-1	EXO-16-005
tt (dileptonic + tt combination)	2016, 2.2 fb-1	EXO-16-028
t hadronic	2016, 12.9 fb-1	EXO-16-040
bb	2015, 2.2 fb-1	B2G-15-007
Not really X	Dataset	Documentation
dijets	2016, 12.9 fb-1	EXO-16-032, 1611.03568
boosted dijets	2016, 2.7 fb-1	EXO-16-030
dijets	2016, 27+36 fb-1	EXO-16-056

S. Schramm 2016 Moriond talk

Analysis summary table

Analysis	Dataset	Public	link	
Production search:				
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}+jet$	2015	Paper:	EXOT-2015-03	
$E_T^{miss} + \gamma$	2015	Paper:	EXOT-2015-05	
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} + Z(ightarrow \ell \ell)$	2015+2016	Note:	ATLAS-CONF-2016-056	new!
$\rm E_T^{miss} + W/Z(\rightarrow qq)$	2015	Paper:	EXOT-2015-08	new!
E_{T}^{miss} +H($\rightarrow bb$)	2015	Note:	ATLAS-CONF-2016-019	
$E_{T}^{miss} + H(\rightarrow \gamma \gamma)$	2015+2016	Note:	ATLAS-CONF-2016-087	new!
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} + H(\rightarrow \ell\ell\ell\ell)$	2015	Note:	ATLAS-CONF-2015-059	
E_{T}^{miss} +b-jets	2015+2016	Note:	ATLAS-CONF-2016-086	new!
$E_{T}^{miss} + t\bar{t} (0\ell)$	2015+2016	Note:	ATLAS-CONF-2016-077	new!
$E_{T}^{miss} + t\bar{t}$ (1 ℓ)	2015+2016	Note:	ATLAS-CONF-2016-050	new!
$\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} + t \overline{t} (2\ell)$	2015+2016	Note:	ATLAS-CONF-2016-076	new!
Mediator search:				
Dijet	2015+2016	Note:	ATLAS-CONF-2016-069	new!
Trigger-level dijet	2015	Note:	ATLAS-CONF-2016-030	
Dijet+ISR	2015+2016	Note:	ATLAS-CONF-2016-070	new!
Summary plots:				
Mediator searches	2015+2016	Plot:	Summary plot page	new!
Search combination	2015+2016	Plot:	Summary plot page	new!

Mono-Photon

- Selection: MET>170 GeV, $p_T^{\gamma} > 175$ GeV, $\Delta \phi(\gamma, MET)>2$, veto e/µ
 - Major backgrounds:
 - Z(vv)+jets, W(lv)+jets:
 - estimated from simulations with NNLO QCD +NLO corrections
 - cross-checked in Z(II)/W($\mu\nu$) CRs
 - (e/jets->)γ MisID and non collisional background:
 - estimated from CRs or SR sidebands

Mono-Photon

- No excess observed
- M_{MED}<760 GeV, M_X<200 GeV excluded (vector/axial)
 - Results used also to set limits on various ADD extra dimension scenarios
- Recast limits on SI/SD of DM-nucleon cross sections and compare to DD results

ICHER ZOIG data

Mono-Jet/Mono-W/Z

EXO-16-037

couplings to fermions and bosons

2016 ICHEP data

Update: DM Mediator Search w/ Dijets

A combination of :

- Low-mass (0.6-1.6 TeV) search with 26 fb-1 using data scouting
- High-mass (> 1.6 TeV) search with 36 fb-1

Model-independent search for excess in dijet mass spectrum

- Sensitive to wide range of BSM, including DM
- AV mediators excluded between 0.6 2.6 TeV

Dijet (low mass)

EXO-16-030

Mono-Jet/Mono-W/Z

- Selection: MET>200 GeV, >= 1 jet, lepton veto
 - additional cut to remove events with instrumental MET
- Categorization in several inclusive+exclusive SRs by varying the MET cut from 250 GeV to 700 GeV
- No observed excess:
 - axial-vector model: Mmed< I TeV, Mchi<250 GeV excluded @ 95% CL
 - data used for exclusion limits of other models (extra spatial dimensions, SUSY)

2015 Data

Recast (M_{MED}, M_X) to nucleon-DM xsec (arXiv:1603.04156</sub>)

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4} \,,$$

$$f(g_q) = 3g_q ,$$

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \ {\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ {\rm GeV}}\right)^2 .$$

$$f(g_q) = 1.16 \cdot 10^{-3} g_q \,,$$

and therefore the size of a typical cross section is

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-43} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125 \,{\rm GeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,{\rm GeV}}\right)^2 \,. \label{eq:sigma_sigma_sigma}$$

Scalar

Recast (M_{MED}, M_X) to nucleon-DM xsec (arXiv:1603.04156</sub>)

$$\sigma_{\rm SD} = \frac{3f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4} \,. \qquad f^{p,n}(g_q) = \Delta_u^{(p,n)} g_u + \Delta_d^{(p,n)} g_d + \Delta_s^{(p,n)} g_s$$

Under the assumption that the coupling g_q is equal for all quarks, one finds

$$f(g_q) = 0.32g_q\,,$$

and thus

$$\sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \ \mathrm{cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \ \mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ \mathrm{GeV}}\right)^2$$

Axial-vector