
Light	Axial	Vectors,	Nuclear	Transi6ons,	
and	the	8Be	Anomaly	

Jonathan	Kozaczuk	(UMass	Amherst)	

U.S.	Cosmic	Visions:	New	Ideas	in	Dark	Ma8er	

3/23/17	



Some	References	

Kozaczuk	 2	

Primarily	based	on	JK,	D.	Morrissey,	and	S.R.	Stroberg,	arXiv:1612.01525	[hep-ph]	

See	also:		
	Krasznahorkay	et	al,	PRL	116	(2016)	no.4,	042501	

	Feng	et	al,	PRL	117	(2016)	no.7,	071803		
																				PRD	95	(2017)	no.3,	035017		

	Kahn	et	al,	arXiv:1609.09072	[hep-ph]	

This	workshop:	
	 	I\ah	Galon’s	slides		

	 	Subsequent	talks	by	Xilin	Zhang,	Rafael	Lang,	and	Kyle	Leach	



The	Atomki	Experiment	in	a	Nutshell	
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Search	for	internal	pair	crea6on	(e+	e-	produc6on)	in	excited		

states	of	8Be	

1.0	µA	proton	beam	from	Van	de	Graaf	generator	impinge	on	LiF2,	LiO2	targets	

e+	e-	energies	and	angles	determined	by	5	plas6c	telescope	detectors	(scin6llator	+	
PMT)	and	mul6-wire	propor6onal	chambers		

Target	

Telescope	detectors	MWPC	

Feng	et	al,	2016	 Gulyas	et	al,	2015	



The	Atomki	Experiment	in	a	Nutshell	
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Proton	beam	energy	tuned	to	excite	J=1	8Be	states	

Detector	calibrated	using	internal	pair	crea6on	in	12C	and	16O	

One	week-long	experiments	at	each	bombarding	energy,	targets	periodically	changed		

Feng	et	al,	2016	



The	Atomki	Results	

Kozaczuk	 5	

Isoscalar	transi6on	features	significant	bump-like	excess	in	e+	e-		

opening	angle	and	invariant	mass	spectrum	(6.8 σ)	

No	corresponding	excess	in	the	isovector	(8Be*’)	transiJon	

Feng	et	al,	2016	

Krasznahorkay	et	al,	2016	
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Interpreta6on	put	forward	by	collabora6on:	light	gauge	boson	

In	the	Atomki	PRL	the	collabora6on	claimed	this	

	to	be	consistent	with	a	standard	dark	photon		

featuring	ε2 ~	10-7	

Feng	et	al	(2016)	pointed	out	that	explaining	the		
Atomki	result	actually	requires																	,		

which	is	excluded,	in	par6cular	by	NA48/2	

m = 16.7± 0.35(stat)± 0.5(syst)MeV

�(8Be0 !8 BeX)

�(8Be0 !8 Be�)
Br(X ! e+e�) = 5.8⇥ 10�6

Krasznahorkay	et	al,	2016	

NA48/2	Collabora6on,	2015	

✏ ⇡ 0.011



A	Protophobic	Vector	Explana6on	
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Assume	more	general	vector	setup	

The	NA48/2	constraint	arises	from															decays.	Rate		

propor6onal	to	axial	anomaly	trace	factor	

General	setup	can	work	provided	X	is	protophobic,		

⇡0 ! X�

2

olution, which broadens the me+e� peak significantly [?
]. They find that the observed excess’s shape and size
are beautifully fit by a new boson with mass mX =
16.7± 0.35 (stat)± 0.5 (sys) MeV and relative branching
ratio B(8Be⇤ ! 8BeX)/B(8Be⇤ ! 8Be �) = 5.8⇥ 10�6,
assuming B(X ! e+e�) = 1. With these values, the fit
had a �2/dof = 1.07.

Protophobic Gauge Bosons. A priori the X boson
may be a scalar, pseudoscalar, vector, axial vector, or
even a spin-2 particle. Some of these cases are easy to
dismiss. If parity is conserved, the X boson cannot be
a scalar: in a 1+ ! 0+0+ transition, angular momen-
tum conservation requires the final state to have L = 1,
but parity conservation requires +1 = (�1)L. Decays to
a pseudoscalar 0� state are not forbidden by any sym-
metry, but are severely constrained by experiment. For
such axion-like particles a, the two-photon interaction
ga��aFµ⌫ F̃µ⌫ is almost certainly present at some level,
but for ma ⇡ 17 MeV, all coupling values in the range
1/(1018 GeV) < ga�� < 1/(10 GeV) are excluded [? ? ].

Here we focus on the vector case. We consider a mas-
sive spin-1 Abelian gauge boson X that couples non-
chirally to standard model (SM) fermions with charges
"f in units of e. The new Lagrangian terms are

L = �1

4
Xµ⌫X

µ⌫ +
1

2
m2

XXµX
µ �XµJµ, (1)

where X has field strength Xµ⌫ and couples to the cur-
rent Jµ =

P
f e"f f̄�µf , or, at the nucleon level, JN

µ =
e"pp̄�µp+e"nn̄�µn, with "p = 2"u+"d and "n = "u+2"d.

We first determine what values of the charges are re-
quired to fit the 8Be signal. The characteristic energy
scale of the decay 8Be⇤ ! 8BeX is 10 MeV, and so we
may consider an e↵ective theory in which 8Be⇤, 8Be, and
X are the fundamental degrees of freedom. The one e↵ec-
tive operator consistent with the JP quantum numbers
of these states is

L
int

=
1

⇤
✏µ⌫↵�

�
@µ

8Be⇤⌫ � @⌫
8Be⇤µ

�
X↵�

8Be . (2)

The matrix element h8BeX|L
int

|8Be⇤i is proportional
to h8Be|JN

µ |8Be⇤i = (e/2)("p + "n)M, where M =
h8Be|(p̄�µp + n̄�µn)|8Be⇤i contains the isoscalar compo-
nent of the current, since the initial and final states are
both isoscalars. The resulting decay width is

�(8Be⇤ ! 8BeX) =
(e/2)2("p + "n)2

3⇡⇤2

|M|2|~pX |3 . (3)

To fit the signal, we need

B(8Be⇤ ! 8BeX)

B(8Be⇤ ! 8Be �)
= ("p+ "n)

2

|~pX |3

|~p� |3
⇡ 5.8⇥ 10�6, (4)

where, up to higher-order corrections [? ], both the nu-
clear matrix elements and the scale ⇤ have canceled in the

ratio. For mX = 17 MeV, we require |"p + "n| ⇡ 0.011,
or

|"u + "d| ⇡ 3.7⇥ 10�3 . (5)

The 17 MeV X boson is produced through hadronic
couplings, but can decay only to e+e�, ⌫⌫̄, or ���. (We
assume there are no decays to unknown particles.) The
three-photon decay is negligible, and we will assume that
decays to neutrinos are also highly suppressed, for the
reasons given below. The X boson then decays through
its electron coupling with width [? ]

�(X ! e+e�) = "2e↵
m2

X + 2m2

e

3mX

q
1� 4m2

e/m
2

X . (6)

The X boson is produced with velocity v ⇡ 0.35c in
the 8Be⇤ frame, which is moving non-relativistically with
v = 0.017c relative to the lab frame. The X mean decay
length is L ⇡ "�2

e 1.8⇥ 10�12 m in the lab frame. The X
boson must decay promptly in the experimental setup of
Refs. [? ? ] so that the e+e� decay products are detected
and the ⇥ measurements are not distorted. Requiring
L . 1 cm, for example, implies

|"e| & 1.3⇥ 10�5 . (7)

From Eq. (??), we see that a dark photon cannot ex-
plain the 8Be anomaly. For a dark photon, fermions
have charges proportional to their SM charges, "f = qf",
where " is the kinetic mixing parameter, and so Eq. (??)
implies " ⇡ 0.011. This is excluded by many experi-
ments, and most stringently by the NA48/2 experiment,
which requires " < "

max

= 8⇥ 10�4 at 90% CL [? ]. The
authors of Ref. [? ] estimated that "2 ⇠ 10�7 can fit the
signal, but this value of " is far too small, in part because
of the |~p|3 suppression of the signal.
The NA48/2 bound, however, does not exclude a gen-

eral vector boson interpretation of the 8Be anomaly. The
NA48/2 limit is a bound on ⇡0 ! X�. In the general
gauge boson case, this is proportional to the anomaly
trace factor N⇡ ⌘ ("uqu � "dqd)2. Applying the dark
photon bound N⇡ < "2

max

/9, we find that, for a general
gauge boson,

|2"u + "d| < "
max

= 8⇥ 10�4 . (8)

Equations (??) and (??) may be satisfied with a mild
⇠ 10% cancelation, provided the charges satisfy

� 2.3 <
"d
"u

< �1.8 , �0.067 <
"p
"n

< 0.078 . (9)

Given the latter condition, we call the general class of
vector models that can both explain the 8Be anomaly
and satisfy pion decay constraints “protophobic.”
Constraints from Other Experiments. Although there

is no need for the gauge boson to decouple from protons
completely, for simplicity, for the rest of this work, we

where the upper part of the "n range includes the coupling for the best fit
branching ratio for mX = 16.7 MeV, and the lower part presumably includes
the best fit value for the larger mX that simultaneously explain the 8Be⇤

signal and the 8Be⇤0 null results. The proton coupling constraint follows from
the NA48/2 constraints to be discussed in Sec. ??. In presenting our models
in Secs. ?? and ??, we leave the dependence on "n explicit so that the impact
of various values of "n can be easily evaluated. Note that the lower values of
�X/�� are still too large to accommodate a dark photon explanation.

6 Constraints From Other Experiments

We now discuss the constraints on the gauge boson’s couplings from all other
experiments, considering quark, electron, and neutrino couplings in turn,
with a summary of all constraints at the end of the section. Many of these
constraints were previously listed in Ref. [?]. We discuss them here in more
detail, update some—particularly the neutrino constraints—to include new
cases and revised estimates from other works, and include other constraints.

6.1 Quark Coupling Constraints

The production of the X boson in 8Be⇤ decays is completely governed by its
couplings to hadronic matter. The most stringent bound on these couplings
in the mX ⇡ 17 MeV mass range is the decay of neutral pions into X�. For
completeness, we also list the leading subdominant constraints on "q, for
q = u, d.

6.1.1 Neutral pion decay, ⇡0 ! X�

The primary constraint on new gauge boson couplings to quarks comes
from the NA48/2 experiment, which performs a search for rare pion decays
⇡0 ! �(X ! e+e�) [?]. The bound scales like the anomaly trace factor
N⇡ ⌘ ("uqu � "dqd)2. Translating the dark photon bound N⇡ < "2

max

/9 to
limits on the new gauge boson couplings gives

|2"u + "d| = |"p| . (0.8� 1.2)⇥ 10�3

p
Br(X ! e+e�)

, (34)

where the range comes from the rapid fluctuations in the NA48/2 limit for
masses near 17 MeV. In Ref. [?], we observed that the left-hand side becomes
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(NA48/2	bound)	

Second, as discussed above, the presence of significant isospin mixing
strongly suggests that the absence of anomalous IPC decays in the 8Be⇤0 state
originates from kinematic suppression, rather than from isospin symmetry or
some other dynamical e↵ect. This, then, argues for masses in the upper region
of the allowed range of Eq. (??). Larger masses imply larger phase-space
suppression, and these may significantly shift the contours of �X/�� in the
("p, "n) plane, as can be seen by comparing the ±1� values of mX in Fig. ??.

Last, and most importantly, to determine the favored couplings, one must
know how the best fit �X/�� depends on mX . In the original experimental
paper, the best fit branching ratio �X/�� = 5.8⇥ 10�6 was presented without
uncertainties and only for the best fit mass of 16.7 MeV. In a subsequent
analysis, however, the experimental collaboration explored the implications
of other masses [?]. In preliminary results from this analysis, the M1 and
E1 background normalizations were fit to the angular spectrum in the range
40�  ✓  120�, and confidence regions in the (mX ,�X/��) plane were
determined with only statistical uncertainties included. For masses larger
than 16.7 MeV, the best fit branching ratio was found to be significantly
smaller. For example, for mX = 17.3 MeV (17.6 MeV), the best fit was for
�X/�� ⇡ 2.3⇥ 10�6 (0.5⇥ 10�6) [?]. For such large masses, the best fit with
fixed backgrounds is not very good, and the implications for nucleon-level
couplings are partially o↵set by the reduced phase space factor |kX |3/|k�|3.
In a full analysis, one should also include systematic errors which are clearly
a significant source of uncertainty in the mX determination, and also let the
background levels float in the fit. We expect that including these e↵ects
will significantly improve the fit for larger masses and favor even smaller
couplings. Specifically, since the anomalous events at angles between 120�

and 135� cannot come from signal when the X mass is heavier, larger M1
and E1 backgrounds will improve the fit and thus require smaller signal to
achieve the best fit to the angular spectrum.

Clearly a complete understanding of the experimental uncertainties re-
quires a detailed analysis that incorporates an accurate estimate of nuclear
isospin violation, simulation of the experiment, systematic uncertainties, vary-
ing backgrounds, and the null 8Be⇤0 result. Such an analysis is beyond the
scope of this study. As a rough estimate of the hadronic couplings required
to explain the 8Be signal, we take

|"n| = (2� 10)⇥ 10�3 (32)

|"p|  1.2⇥ 10�3 , (33)
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5 Signal Requirements for Gauge Boson Cou-

plings

In this section, we discuss what a gauge boson’s couplings must be to explain
the 8Be signal. We begin with the leptonic couplings, where the require-
ments are straightforward to determine. To produce the IPC signal, the X
boson must decay to e+e�. The Atomki pair spectrometer has a distance of
O(few) cm between the target, where the 8Be excited state is formed, and the
detectors that observe the charged particles [?]. The X boson decay width to
electrons is

�(X ! e+e�) = "2e↵
m2

X + 2m2

e

3mX

q
1� 4m2

e/m
2

X , (29)

with similar formulae for other fermion final states [?]. Requiring that the
new boson propagate no more than 1 cm from its production point implies a
lower bound

|"e|p
Br(X ! e+e�)

& 1.3⇥ 10�5 . (30)

If the X boson couples only to the charged SM fermions required to explain
the 8Be anomaly, one has Br(X ! e+e�) = 1. Note, however, that if "⌫ 6= 0
or if there exist light hidden-sector states with X charge, then there are
generically other decay channels for X.

The required quark couplings are determined by the signal event rate,
that is, the best fit �X/��. In the Atomki experimental paper, the best fit
branching fraction is that given in Eq. (??). Combining this result with the
isospin conserving expression for the branching ratio of Eq. (??), we find

|"p + "n| ⇡ 1.0⇥ 10�2

p
Br(X ! e+e�)

or |"u + "d| ⇡ 3.3⇥ 10�3

p
Br(X ! e+e�)

, (31)

where we have taken mX = 16.7 MeV. These results, shifted slightly to
mX = 17 MeV, were presented previously in Ref. [?].

Given the discussion above, however, several refinements are in order.
First, one can include the isospin-violating e↵ects discussed in Sec. ??. These
modify the branching ratio expression from Eq. (??) to Eq. (??), with the
e↵ects shown in Fig. ??.
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(large	enough	rate;	some	caveats	here)	

(prompt	decays)	

Feng	et	al,	2016	(PRL	+	PRD)	

See	I\ah	Galon’s	slides	for	more	details	

2

olution, which broadens the me+e� peak significantly [?
]. They find that the observed excess’s shape and size
are beautifully fit by a new boson with mass mX =
16.7± 0.35 (stat)± 0.5 (sys) MeV and relative branching
ratio B(8Be⇤ ! 8BeX)/B(8Be⇤ ! 8Be �) = 5.8⇥ 10�6,
assuming B(X ! e+e�) = 1. With these values, the fit
had a �2/dof = 1.07.

Protophobic Gauge Bosons. A priori the X boson
may be a scalar, pseudoscalar, vector, axial vector, or
even a spin-2 particle. Some of these cases are easy to
dismiss. If parity is conserved, the X boson cannot be
a scalar: in a 1+ ! 0+0+ transition, angular momen-
tum conservation requires the final state to have L = 1,
but parity conservation requires +1 = (�1)L. Decays to
a pseudoscalar 0� state are not forbidden by any sym-
metry, but are severely constrained by experiment. For
such axion-like particles a, the two-photon interaction
ga��aFµ⌫ F̃µ⌫ is almost certainly present at some level,
but for ma ⇡ 17 MeV, all coupling values in the range
1/(1018 GeV) < ga�� < 1/(10 GeV) are excluded [? ? ].

Here we focus on the vector case. We consider a mas-
sive spin-1 Abelian gauge boson X that couples non-
chirally to standard model (SM) fermions with charges
"f in units of e. The new Lagrangian terms are

L = �1

4
Xµ⌫X

µ⌫ +
1

2
m2

XXµX
µ �XµJµ, (1)

where X has field strength Xµ⌫ and couples to the cur-
rent Jµ =

P
f e"f f̄�µf , or, at the nucleon level, JN

µ =
e"pp̄�µp+e"nn̄�µn, with "p = 2"u+"d and "n = "u+2"d.

We first determine what values of the charges are re-
quired to fit the 8Be signal. The characteristic energy
scale of the decay 8Be⇤ ! 8BeX is 10 MeV, and so we
may consider an e↵ective theory in which 8Be⇤, 8Be, and
X are the fundamental degrees of freedom. The one e↵ec-
tive operator consistent with the JP quantum numbers
of these states is

L
int

=
1

⇤
✏µ⌫↵�

�
@µ

8Be⇤⌫ � @⌫
8Be⇤µ

�
X↵�

8Be . (2)

The matrix element h8BeX|L
int

|8Be⇤i is proportional
to h8Be|JN

µ |8Be⇤i = (e/2)("p + "n)M, where M =
h8Be|(p̄�µp + n̄�µn)|8Be⇤i contains the isoscalar compo-
nent of the current, since the initial and final states are
both isoscalars. The resulting decay width is

�(8Be⇤ ! 8BeX) =
(e/2)2("p + "n)2

3⇡⇤2

|M|2|~pX |3 . (3)

To fit the signal, we need

B(8Be⇤ ! 8BeX)

B(8Be⇤ ! 8Be �)
= ("p+ "n)

2

|~pX |3

|~p� |3
⇡ 5.8⇥ 10�6, (4)

where, up to higher-order corrections [? ], both the nu-
clear matrix elements and the scale ⇤ have canceled in the

ratio. For mX = 17 MeV, we require |"p + "n| ⇡ 0.011,
or

|"u + "d| ⇡ 3.7⇥ 10�3 . (5)

The 17 MeV X boson is produced through hadronic
couplings, but can decay only to e+e�, ⌫⌫̄, or ���. (We
assume there are no decays to unknown particles.) The
three-photon decay is negligible, and we will assume that
decays to neutrinos are also highly suppressed, for the
reasons given below. The X boson then decays through
its electron coupling with width [? ]

�(X ! e+e�) = "2e↵
m2

X + 2m2

e

3mX

q
1� 4m2

e/m
2

X . (6)

The X boson is produced with velocity v ⇡ 0.35c in
the 8Be⇤ frame, which is moving non-relativistically with
v = 0.017c relative to the lab frame. The X mean decay
length is L ⇡ "�2

e 1.8⇥ 10�12 m in the lab frame. The X
boson must decay promptly in the experimental setup of
Refs. [? ? ] so that the e+e� decay products are detected
and the ⇥ measurements are not distorted. Requiring
L . 1 cm, for example, implies

|"e| & 1.3⇥ 10�5 . (7)

From Eq. (??), we see that a dark photon cannot ex-
plain the 8Be anomaly. For a dark photon, fermions
have charges proportional to their SM charges, "f = qf",
where " is the kinetic mixing parameter, and so Eq. (??)
implies " ⇡ 0.011. This is excluded by many experi-
ments, and most stringently by the NA48/2 experiment,
which requires " < "

max

= 8⇥ 10�4 at 90% CL [? ]. The
authors of Ref. [? ] estimated that "2 ⇠ 10�7 can fit the
signal, but this value of " is far too small, in part because
of the |~p|3 suppression of the signal.
The NA48/2 bound, however, does not exclude a gen-

eral vector boson interpretation of the 8Be anomaly. The
NA48/2 limit is a bound on ⇡0 ! X�. In the general
gauge boson case, this is proportional to the anomaly
trace factor N⇡ ⌘ ("uqu � "dqd)2. Applying the dark
photon bound N⇡ < "2

max

/9, we find that, for a general
gauge boson,

|2"u + "d| < "
max

= 8⇥ 10�4 . (8)

Equations (??) and (??) may be satisfied with a mild
⇠ 10% cancelation, provided the charges satisfy

� 2.3 <
"d
"u

< �1.8 , �0.067 <
"p
"n

< 0.078 . (9)

Given the latter condition, we call the general class of
vector models that can both explain the 8Be anomaly
and satisfy pion decay constraints “protophobic.”
Constraints from Other Experiments. Although there

is no need for the gauge boson to decouple from protons
completely, for simplicity, for the rest of this work, we
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]. They find that the observed excess’s shape and size
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X are the fundamental degrees of freedom. The one e↵ec-
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or
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couplings, but can decay only to e+e�, ⌫⌫̄, or ���. (We
assume there are no decays to unknown particles.) The
three-photon decay is negligible, and we will assume that
decays to neutrinos are also highly suppressed, for the
reasons given below. The X boson then decays through
its electron coupling with width [? ]
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The X boson is produced with velocity v ⇡ 0.35c in
the 8Be⇤ frame, which is moving non-relativistically with
v = 0.017c relative to the lab frame. The X mean decay
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Refs. [? ? ] so that the e+e� decay products are detected
and the ⇥ measurements are not distorted. Requiring
L . 1 cm, for example, implies

|"e| & 1.3⇥ 10�5 . (7)

From Eq. (??), we see that a dark photon cannot ex-
plain the 8Be anomaly. For a dark photon, fermions
have charges proportional to their SM charges, "f = qf",
where " is the kinetic mixing parameter, and so Eq. (??)
implies " ⇡ 0.011. This is excluded by many experi-
ments, and most stringently by the NA48/2 experiment,
which requires " < "

max

= 8⇥ 10�4 at 90% CL [? ]. The
authors of Ref. [? ] estimated that "2 ⇠ 10�7 can fit the
signal, but this value of " is far too small, in part because
of the |~p|3 suppression of the signal.
The NA48/2 bound, however, does not exclude a gen-

eral vector boson interpretation of the 8Be anomaly. The
NA48/2 limit is a bound on ⇡0 ! X�. In the general
gauge boson case, this is proportional to the anomaly
trace factor N⇡ ⌘ ("uqu � "dqd)2. Applying the dark
photon bound N⇡ < "2

max

/9, we find that, for a general
gauge boson,

|2"u + "d| < "
max

= 8⇥ 10�4 . (8)

Equations (??) and (??) may be satisfied with a mild
⇠ 10% cancelation, provided the charges satisfy

� 2.3 <
"d
"u

< �1.8 , �0.067 <
"p
"n

< 0.078 . (9)

Given the latter condition, we call the general class of
vector models that can both explain the 8Be anomaly
and satisfy pion decay constraints “protophobic.”
Constraints from Other Experiments. Although there

is no need for the gauge boson to decouple from protons
completely, for simplicity, for the rest of this work, we

,	
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Another	poten6al	explana6on:	light	axial	vector	

Axial	anomaly	does	not	contribute	to																in	this	case	and	so			

X	does	not	have	to	be	protophobic	

Also,	less	momentum	suppression	(L=0	vs	L=1	in	vector	case)	

Challenge:	have	to	do	some	nuclear	physics	

⇡0 ! X�

of freedom that, prima facie, may play the role of the X boson. We show
that some common candidates for X are excluded. We note that for the case
where X has spin-parity JP = 1� and isospin mixing between 8Be⇤ and 8Be⇤0

is neglected, nuclear matrix elements and their uncertainties cancel in the
ratio of partial widths, �( 8Be⇤ ! 8BeX)/�( 8Be⇤ ! 8Be �).

3.1 E↵ective Operators for 8Be⇤ ! 8BeX

The candidate spin/parity choices for X are: a 0� pseudoscalar a, a 1+ axial
vector A, and a 1� vector V . We argue below that there is no scalar operator
in the parity-conserving limit. The leading Lorentz- and parity-invariant
operators mediating the transition 8Be⇤ ! 8BeX are:

LP = gP
8Be (@µa)

8Be⇤µ (5)

LA =
gA
⇤A

8BeGµ⌫F (A)

µ⌫ +
g0A
⇤A

m2

A
8BeAµ

8Be⇤µ (6)

LV =
gV
⇤V

8BeGµ⌫F
(V )

⇢� ✏µ⌫⇢� , (7)

where Gµ⌫ ⌘ @µ 8Be⇤⌫ � @⌫ 8Be⇤µ is the field strength for the excited 8Be⇤ state,

F (V )

µ⌫ and F (A)

µ⌫ are the field strengths for the new vector and axial vector
bosons, respectively, and the dimensionful parameters ⇤i encode the dominant
nuclear matrix elements relevant for the transition in each case.

In the vector case, one may write an explicit gauge-breaking term propor-
tional to 8Be⇤µ V⌫ . Lorentz and parity invariance requires that such a term
must also contain two derivatives and ✏µ⌫⇢�. One may then integrate by parts
and use the equation of motion and the Ward identity,

@µF (V )

µ⌫ = �m2

V V⌫ and @µ
8Be⇤µ = 0 , (8)

to convert this back to the unique operator in LV . This is in contrast to
the axial vector case, where the gauge-breaking part cannot be related by
operator identities to the gauge-invariant piece and is thus a separate term
with a separate e↵ective coupling g0A.

3.2 Scalar Candidates

A popular example of a JP = 0+ scalar candidate for the X boson is a dark
Higgs [?]. However, a scalar cannot mediate the observed 8Be⇤ decay in the

11

Leading	term	for	vector	

JK,	D.	Morrissey,	S.	Stroberg,	2016	

M2
8Be⇤!8BeX =

4

3

g2A
⇤2

M2m2
X

 
3 + 2

|~pX |2

m2
X

!

calculations apply to an excellent approximation. These momenta are also much smallar than
the inverse nuclear radius R�1, with kR ' 0.12 (k/10 MeV)(A/8)1/3. Working to leading
order in k/mN and kR, the general expression of Eq. (13) can be simplified considerably.

For an axial vector, we assume a coupling to quarks of the form

�L � Xµ

X

q

gq q̄�
µ�5q , (15)

where the sum runs over quark flavours. When this operator is inserted between a pair of
nucleon states, the leading term in an expansion in k/mN is [38, 39, 42, 43]

hN |
X

q

gq q̄�
µ�5q|Ni = �µi �

i
X

q

gq�q(N) . (16)

The coe�cients �q(N) are measured to be [44, 45]

�u(p) = �d(n) = 0.78± 0.02

�d(p) = �u(n) = � 0.48± 0.02 (17)

�s(p) = �s(n) = � 0.15± 0.02

where the equalities hold to within error bars. We will use the central values of the above
quantities throughout our analysis. The leading nucleon operator is often written in the
isospin-inspired notation [38]

�Leff � N(~� · ~X)
1

2
(a0 + a1⌧3)N , (18)

where ⌧3 is the Pauli matrix in isospin space and

a0 = (�u(p) +�d(p))(gu + gd) + 2gs�s(p) (19)

a1 = (�u(p) ��d(p))(gu � gd) . (20)

The corresponding forms for the proton and neutron are ap = (a0+a1)/2 and an = (a0�a1)/2.
From this, we can identify the leading-order current operator to be used in nuclear matrix
elements as [37]

~J (~x) =
AX

j=1

aj~�
j�(~x� ~xj) , J 0(~x) ! 0 , (21)

where the sum runs over all nucleons. The corresponding expression for a (non-axial) vector
can be found in Ref. [37].

Turning next to nuclear matrix elements, the leading transition operator for an axial

6
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In	the	vector	case,	nuclear	matrix	elements	cancel	(in	the		

pure	isospin	limit)		

Cancella6on	does	not	hold	in	the	axial	vector	case	

�(8Be⇤ !8 BeX)

�(8Be⇤ !8 Be�)
/ h8Be |Jµ

X |8 Be⇤i
h8Be |Jµ

EM|8 Be⇤i
=

("p + "n)h8Be
��N̄�µN

��8 Be⇤i
h8Be

��N̄�µN
��8 Be⇤i

= "p + "n

�(8Be⇤ !8 BeX)

�(8Be⇤ !8 Be�)
/ h8Be |Jµ

X |8 Be⇤i
h8Be |Jµ

EM|8 Be⇤i
=

a0h8Be
��N̄�µ�5N

��8 Be⇤i
h8Be

��N̄�µN
��8 Be⇤i

JX
µ =

X

f

"f f̄�µ�5f

Here																																																														relates	nucleon	to	quark	operators,	with	current	

Need	matrix	element	

a0 = 2(�u+�d)(✏u + ✏d) + 4�s✏s
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How	large	do	the	couplings	have	to	be?	

calculations apply to an excellent approximation. These momenta are also much smallar than
the inverse nuclear radius R�1, with kR ' 0.12 (k/10 MeV)(A/8)1/3. Working to leading
order in k/mN and kR, the general expression of Eq. (13) can be simplified considerably.

For an axial vector, we assume a coupling to quarks of the form

�L � Xµ

X
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gq q̄�
µ�5q , (15)

where the sum runs over quark flavours. When this operator is inserted between a pair of
nucleon states, the leading term in an expansion in k/mN is [38, 39, 42, 43]

hN |
X

q

gq q̄�
µ�5q|Ni = �µi �

i
X

q

gq�q(N) . (16)

The coe�cients �q(N) are measured to be [44, 45]

�u(p) = �d(n) = 0.78± 0.02

�d(p) = �u(n) = � 0.48± 0.02 (17)

�s(p) = �s(n) = � 0.15± 0.02

where the equalities hold to within error bars. We will use the central values of the above
quantities throughout our analysis. The leading nucleon operator is often written in the
isospin-inspired notation [38]

�Leff � N(~� · ~X)
1

2
(a0 + a1⌧3)N , (18)

where ⌧3 is the Pauli matrix in isospin space and

a0 = (�u(p) +�d(p))(gu + gd) + 2gs�s(p) (19)

a1 = (�u(p) ��d(p))(gu � gd) . (20)

The corresponding forms for the proton and neutron are ap = (a0+a1)/2 and an = (a0�a1)/2.
From this, we can identify the leading-order current operator to be used in nuclear matrix
elements as [37]

~J (~x) =
AX

j=1

aj~�
j�(~x� ~xj) , J 0(~x) ! 0 , (21)

where the sum runs over all nucleons. The corresponding expression for a (non-axial) vector
can be found in Ref. [37].

Turning next to nuclear matrix elements, the leading transition operator for an axial
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Inserting these expressions into Eq. (24) above, we have

� =
k

18⇡

✓
2 +

E2
k

m2
X

◆
|anh0||�n||1i+ aph0||�p||1i|2 . (27)

Thus, the required nuclear input to the decay width consists of two reduced matrix elements
(for each of the two relevant 8Be excited states).

3 Ab Initio Calculation of 8Be Matrix Elements

To evaluate the nuclear matrix elements, we perform ab initio calculations using realistic
nuclear forces. In the present case, this means that we solve the full quantum mechani-
cal system of eight nucleons (for 8Be) interacting with each other through forces derived
from chiral e↵ective field theory using the in-medium similarity renormalization group (IM-
SRG) [46, 47, 48], a recently-developed many-body method.

3.1 Chiral Interactions

The inter-nucleon interactions used in our calculation are derived from chiral e↵ective field
theory and include two- and three-nucleon components. For the two-nucleon (NN) inter-
action, we use the result of Entem and Machleidt, Ref. [49], derived at next-to-next-to-
next-to-leading order (N3LO) in the chiral expansion, with a non-local regulator with cuto↵
⇤NN = 500 MeV. Importantly, this interaction includes the Coulomb force as well as nuclear
isospin symmetry-breaking terms [49]. For the three-nucleon (3N) interaction, we use the
local N2LO interaction of Navrátil, Ref. [50], with cuto↵ ⇤3N = 400 MeV 1 and the two low
energy constants cD and cE fit to the triton half-life and A = 3 binding energies [51].

To facilitate the convergence of the many-body calculation, the NN and 3N interac-
tions are softened by the similarity renormalization group (SRG) to a momentum scale
�SRG = 2.0 fm�1 [52, 53]. We designate this interaction SRG 2.0. As a check, we also
employ the same interaction softened to a momentum scale �SRG = 1.88 fm�1. Since the
SRG is a unitary transformation (up to induced four-body forces), the end results should be
approximately independent of our choice of �SRG. The lower cuto↵ ⇤3N mentioned above was
used in Ref. [54], and in many subsequent works (see e.g. [55, 56, 57, 58, 59], because – in the
region around 16O – it produced results with a much weaker dependence on �SRG, indicating
smaller induced 4N e↵ects. We also compare with calculations using the same N3LO NN
force but with the non-local N2LO 3N interaction of Ref. [60], which is not consistently SRG-
evolved, but instead has the 3N contact terms fit to reproduce the 3H binding energy and
the 4He radius. The NN force is SRG softened to �SRG = 1.8 fm�1, while the 3N force uses
a regulator ⇤3N = 2.0 fm�1 ⇡ 395 MeV. This interaction – which was previously used to

1While the regulators used in the NN and 3N sectors are not the same, there is no consensus as to how
to consistently regulate the NN and 3N forces. Fortunately, the present results are not sensitive to these
details.
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Reduced	matrix	elements	of	spin	operators	ac6ng	on	all	
nucleons	of	a	given	type	in	the	nucleus	

Quark-level	interac6on	 Nucleon-level	operators	

Decay	width	for	J	=	1	!	0	transi6ons	(at	leading	order	in	k/mN	expansion):	

Need	to	compute																						for	the	8Be	states	of	interest		

vector to be used in Eq. (2) is

O =

Z
d3x

X

�

e�i~k·~x✏⇤� (ê
⇤
� · ~J ) (22)

=
X

�

AX

j=1

aj✏
⇤
� (ê⇤� · ~�j) +O(kR)

=
X

�

AX

j=1

aj✏
⇤
� (�1)��j

1,�� +O(kR) ,

where in the last line we have expressed ~� as a spherical tensor operator. This expression
can be applied to Eq. (2) to derive the transition matrix element M that appears in the
general form of the decay width given in Eqs. (13,14).

2.3 Application to the Atomki Anomaly in 8Be

As an application of the above formalism, we turn next to 8Be transitions related to the
anomaly seen at the MTA-Atomki facility [22]. The relevant 8Be states, together with their
properties, are listed in Table 1. Recall that an excess bump-like feature is seen in the
isoscalar 8Be⇤(1+) ! 8Be(0+) + e+e� mode, but not in the related isovector 8Be⇤0(1+) !
8Be(0+) transition. To evaluate whether the anomaly can be explained by a light axial vector
with 8Be⇤(1+) ! 8Be(0+)+X, the isoscalar and isovector decay rates to the axial vector are
needed.

The initial and final nuclear states in the 8Be⇤ ! 8Be+X and 8Be⇤0 ! 8Be+X transitions
have total angular momenta Ji = 1 and Jf = 0, while the leading transition operator is a
spherical tensor with J = 1. This implies

hJf ,Mf | �j
1,��|Ji,Mii / �M

i

,� . (23)

Using this feature, we can combine Eqs. (2,5,22) to write the total decay width as

� =
k

6⇡

"
2|h0, 0|

AX

j=1

aj�
j
1,�|1, 1i|2 +

✓
Ek

mX

◆2

|h0, 0|
AX

j=1

aj�
j
1,0|1, 0i|2

#
. (24)

The sums in this expression can be split into neutron and proton pieces:

AX

j=1

aj�
j
1,� = an

A�ZX

j=1

�j,n
1,� + ap

ZX

j=1

�j,p
1,� ⌘ an�̂

n
1,� + ap�̂

p
1,� (25)

where the hatted operators signify the spin operators acting on all nucleons of a given type in
the nucleus. Using the Wigner-Eckart theorem, the various matrix elements can be written
in terms of Wigner 3j symbols and reduced matrix elements. This yields

h00|�̂p,n
1,�1|11i = �h00|�̂p,n

1,0 |10i =
1p
3
h0||�p,n||1i. (26)
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Full	ab-iniFo	calcula6on	of	the	matrix	elements		

Figure 2: Reduced transition matrix elements for the M1, �p, and �n operators between the

|Si (8Be⇤, left column) and the |Vi (8Be⇤0, right column) 1+ excited states and the ground state of
8Be as a function of the isospin mixing fraction |↵|2. Approximate corrections for meson exchange
currents have been included. Circles indicate results using the SRG 1.88 interaction, triangles
indicate the SRG 2.0 interaction, and squares indicate the EM 1.8/2.0 interaction. The single-
particle basis truncations are indicated by di↵erent colors: emax = 4 (cyan), 6 (green), 8 (blue),
10 (magenta), 12 (red). We include points for oscillator frequencies ~!=12, 16, 20, 24, and 28 MeV.
The M1 matrix element for the T ' 0, JP = 1+ state in the upper left is used to constrain the
range of the isospin mixing fraction, which is then used to make predictions for the other matrix
elements, indicated by the hashed boxes.

These are:

mX ' 17.3MeV,
�8Be⇤!8BeX

�8Be⇤!8Be �

' 2.3⇥ 10�6

mX ' 17.6MeV,
�8Be⇤!8BeX

�8Be⇤!8Be �

' 5.0⇥ 10�7.

(39)
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U6lizes	the	In-Medium	Similarity		

Renormaliza6on	Group	(IM-SRG)		

with	forces	derived	from	chiral		
effec6ve	theory	(NN	+	3N)	and		

including	effects	from	meson		

exchange	currents	(MECs)		

Fix	isospin	mixing	frac6on	from	M1		

isoscalar	transi6on	to	extract		

predic6ons	for	the	other	matrix		

elements	
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Results:	
Matrix element Prediction
h0+kM1kVi (µN) 0.76(12)
h0+k�pkVi 0.102(28)
h0+k�nkVi �0.073(29)
h0+k�pkSi �0.047(29)
h0+k�nkSi �0.132(33)

Table 2: Predicted nuclear matrix elements for the various transitions of interest, obtained
by the correlation method described in the text. The predicted value of the M1 matrix
element for the physical isovector-like state (V) is consistent with the experimental value
0.84(7)µN .

As the |Si state is predominantly T = 0, MEC corrections to the decay of this state
are smaller and we expect this calculation to be more accurate than for the decay of the
|Vi state. In the upper left panel of Fig. 2 we observe a strong correlation between the
h0+|M1|Si matrix element and the isospin mixing, indicated by the purple band. We use
this correlation and the experimentally knownM1 strength to constrain the isospin mixing in
our calculations, and find |↵| = 0.35(8). This is larger than the value ↵ = 0.21(3) extracted
in Ref. [77] from a fit to data based on shell model calculations and a bare M1 operator, but
consistent with ↵ = 0.31(4) obtained in Ref. [75] that does include MEC corrections. With
this constraint, we make predictions for the other matrix elements, indicated by the hashed
boxes in Fig. 2. Our results are summarized in Table 2.

4 The 8Be Anomaly from an Axial Vector

Equipped with the nuclear transition matrix elements and the formalism described above,
we can now address the Atomki 8Be anomaly [22] in terms of a light axial vector. Recall that
the anomaly is seen in isoscalar 8Be⇤ ! 8Be transitions, but not in isovector 8Be⇤0 ! 8Be.
We find that this feature can arise naturally for decays to a light axial vector.

4.1 Isoscalar 8Be
⇤ ! 8Be+X Transitions

The original experimental paper reporting the 8Be anomaly also provided an interpretation
in terms of a light vector boson [22]. The best fit mass and decay rate explaining the observed
deviation from the predicted internal pair creation signal assuming BR(X ! e+e�) = 1 were
reported to be

mX ' 16.7MeV,
�8Be⇤!8BeX

�8Be⇤!8Be �

' 5.8⇥ 10�6 , (38)

with �8Be⇤!8Be � ' (1.9 ± 0.4) eV [23]. Best-fit points for fixed higher masses were subse-
quently presented in Ref. [25], citing a private communication with the authors of Ref. [22].

13

Things	to	note:	

	-Rela6ve	sign	between	the	proton	and	neutron	matrix	elements	for	the	
	8Be*’	transi6on,	but	not	for	8Be*,	results	in	suppression	of	isovector	rate	

	-Significant	error	bars	(can	be	improved	in	the	future)	but	results	enough	
	to	begin	scru6ny	of	the	axial	vector	scenario		
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Obtain	range	of	couplings	required	to	explain	the	Atomki	result	

Requirements	depend	on	precise	mass	(need	more	info	from	experimentalists)	

Demand	that	the	corresponding	isovector		
transi6on	rate	is	not	too	large	to	conflict	with		
null	results	(Feng	et	al,	2016)	
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indicate the SRG 2.0 interaction, and squares indicate the EM 1.8/2.0 interaction. The single-
particle basis truncations are indicated by di↵erent colors: emax = 4 (cyan), 6 (green), 8 (blue),
10 (magenta), 12 (red). We include points for oscillator frequencies ~!=12, 16, 20, 24, and 28 MeV.
The M1 matrix element for the T ' 0, JP = 1+ state in the upper left is used to constrain the
range of the isospin mixing fraction, which is then used to make predictions for the other matrix
elements, indicated by the hashed boxes.

These are:

mX ' 17.3MeV,
�8Be⇤!8BeX

�8Be⇤!8Be �

' 2.3⇥ 10�6

mX ' 17.6MeV,
�8Be⇤!8BeX

�8Be⇤!8Be �

' 5.0⇥ 10�7.

(39)
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Figure 3: Quark couplings required to explain the MTA-Atomki 8Be anomaly via a light axial
vector assuming gu < 0, gd > 0, and electron couplings such that BR(X ! e+e�) = 1 is prompt.
The hatched bands, from lightest to darkest, correspond to the parameter space consistent with the
MTA-Atomki result for mX = 16.7, 17.3, 17.6 MeV. They were obtained for each mass by varying
the relevant nuclear matrix elements across their allowed ranges. The orange region to the upper
right is excluded by the non-observation of an excess in the isovector 8Be

⇤0 ! 8Be+ e+e� channel.

nuclear matrix elements within the ranges quoted in Table 2 and mX 2 [16.7, 17.6] MeV
are indicated by the orange shaded region in the figure. The limit is the strongest model-
independent constraint on the parameter space shown, highlighting the potential for nuclear
decay experiments to probe previously unexplored theories of light vector bosons. The
hatched regions in Fig. 3 are consistent with both the 8Be⇤ anomaly and the 8Be⇤0 constraint.
Roughly, this requires Max(|gu|, |gd|) . 10�4.

The results of Fig. 3 also reflect that the 8Be⇤0 ! 8Be+X transition rate can be suppressed
relative to that of the 8Be⇤ ! 8Be+X mode for an axial vector, which is an important virtue
of the axial vector interpretation. This e↵ect is dynamical, as can be seen by comparing the
relative sizes and signs of the reduced matrix elements in Table 2. In particular, the axial
vector matrix elements are of similar size for both the isoscalar and isovector states, while the
M1 matrix element relevant to the denominators in Eq. (40) is much larger for the isovector
than the isoscalar. This leads to a suppression of the isovector ratio in Eq. (40) relative to
the isoscalar that is not possible for a light gauge boson with only vector couplings, for which
the relevant matrix elements are also proportional to those for the M1 transition. One must
then rely on kinematic suppression of the vector contribution to this transition by pushing
the mass of the new particle closer to the 8Be⇤0 threshold [24, 25], which appears to worsen
the fit to experimental data.
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It is likely that the overall fit to the data is worse for these higher masses [22]. The best-fit
mass and width for an axial vector may also di↵er due to the potentially slightly di↵erent
angular distribution of e+e� pairs relative to a purely vector coupling. However, in both
cases more information about the experimental apparatus and analysis would be needed to
investigate these features in detail.

Starting with the decay widths listed above, we compute the range of quark couplings to
the axial vector that explain the 8Be anomaly. To do so, we use Eqs. (19,20) to relate the
quark couplings gq to the coe�cients ap and an, and then evaluate the decay width of Eq. (27)
varying the nuclear matrix elements listed in Table 2 across their uncertainty bands. The
final results are shown in Fig. 3 assuming gu < 0, gd > 0, gs = gd, and BR(X ! e+e�) = 1.

The ranges of potential axial vector quark couplings for the 8Be anomaly are fairly large
due to the significant uncertainties on the values of the nuclear matrix elements. If the
anomaly is confirmed in future experiments, it will be important to increase the precision
of the nuclear calculation. Despite these uncertainties, we can draw some preliminary
conclusions about the parameter space consistent with the anomaly. In general, we find that
Max(|gu| , |gd|) & 10�5 is required to explain the result. Note that this is significantly smaller
than the quark couplings needed for the protophobic vector explanation of the anomaly
studied in Refs. [24, 25]. This can be understood in terms of the leading partial wave for
the decay, with the axial vector decay proceeding at ` = 0 and proportional to k/mX ⌧ 1
(from phase space), while the vector decay proceeds at ` = 1 with a rate proportional to
k3/m3

X [24].

4.2 Isovector 8Be
⇤0 ! 8Be+X Transitions

The transition rate for 8Be⇤0 ! 8Be+X can be computed in the same way as discussed above.
Since no significant excess was seen in 8Be⇤0 ! 8Be + e+e� [22, 78], we must check whether
the quark couplings gq that explain the anomaly in the isoscalar channel are consistent with
the data in the isovector mode.

The condition we impose on the isovector channel for a given vector boson mass follows
that used in Ref. [24]:

�8Be⇤!8BeX

�8Be⇤!8Be �

> 5⇥ �8Be⇤0!8BeX

�8Be⇤0!8Be �

. (40)

This (approximate) requirement is obtained by assuming that the statistical uncertainties
on the 8Be⇤0 transition are comparable to those for the 8Be⇤ transition, and that the ratios
of the pair creation to electromagnetic transition rates are similar for both states.4. A more
precise upper bound on the isovector transition rate would require additional information
about the MTA-Atomki detector sensitivities.

In Fig. 3 we show the impact of the 8Be⇤0 condition of Eq. (40) on the possible ranges
gu and gd. Values of the couplings for which Eq. (40) is not satisfied for any value of the

4We thank Jonathan Feng for clarification on this point.
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From	Feng	et	al,	2016:	
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What	about	other	constraints?	And	UV	comple6on?	

Impact	of	other	constraints	depend	on	UV	comple6on.	Our	assump6ons:	

	-Purely	axial	genera6on-independent	quark	couplings	

	-Both	axial-	and	vector-like	couplings	to	leptons:	

	-Vanishing	couplings	to	neutrinos	

	-100%	branching	frac6on	into	electron-positron	pairs	

These	assump6ons	can	be	relaxed	if	so	desired	

5 Constraints on Axial Vectors for the 8Be Anomaly

In addition to the requirements on the quark couplings discussed above, the axial vector
must couple to leptons to allow it to decay to e+e� pairs within the Atomki detector. Lepton
couplings also typically arise when the axial vector is embedded in a consistent UV-complete
theory. Together, these quark and lepton couplings imply significant constraints on light
vector explanations of the 8Be anomaly. In this section we investigate the most significant
constraints on a light vector with axial quark couplings, making extensive use of the recent
related analyses of Refs. [9, 25, 33]. These bounds will be applied to a UV complete theory
of a light axial vector in the section to follow.

To focus our study on the most important constraints on light axial vector explanations
of the 8Be anomaly, we adopt the following assumptions:

1. The light vector X has only axial couplings to quarks, and these couplings are gener-
ation independent to avoid flavor mixing.

2. Both vector and axial couplings to charged leptons are allowed for the light vector:

L � Xµ

X

i

¯̀
i

�
gVi �

µ + gAi �
µ�5

�
`i , (41)

where the sums run over the charged leptons of the Standard Model. These couplings
are again assumed to be generation independent.

3. The couplings of the vector boson to neutrinos vanish. This circumvents stringent con-
straints from electron-neutrino scattering experiments [33, 79, 80, 81], and guarantees
BR(X ! e+e�) = 1 in the absence of other light states.

With these assumptions, we compute the most significant constraints on light vectors due
their lepton and quark couplings.

5.1 Lepton Coupling Constraints

For a light vector X to explain the 8Be anomaly, its couplings to electrons must be large
enough that it decays inside the Atomki detector. As pointed out in Refs. [25], this implies

p
(gVe )

2 + (gAe )
2

e
& 1.3⇥ 10�5 . (42)

Beyond this basic requirement, the lepton couplings of a light vector are constrained by lepton
anomalous magnetic moments, beam dump searches, electron-positron collider experiments,
and tests of parity violation in Møller scattering.
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Dominant	constraints	on	lepton	couplings:	

Dominant	constraints	on	quark	couplings:	

Decays	inside	Atomki	detector:	

Muon	(g-2):	

Electron	beam	dumps	(SLAC	E141):	

Electron-positron	colliders	(KLOE2):	

Parity-viola6ng	Moller	scatering	(SLAC	E158):	

η	!	µ+ µ- :	

Proton	fixed	target	experiments	(ν-Cal	I)	(also	depends	on	coupling	to	electrons)	
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In addition to the requirements on the quark couplings discussed above, the axial vector
must couple to leptons to allow it to decay to e+e� pairs within the Atomki detector. Lepton
couplings also typically arise when the axial vector is embedded in a consistent UV-complete
theory. Together, these quark and lepton couplings imply significant constraints on light
vector explanations of the 8Be anomaly. In this section we investigate the most significant
constraints on a light vector with axial quark couplings, making extensive use of the recent
related analyses of Refs. [9, 25, 33]. These bounds will be applied to a UV complete theory
of a light axial vector in the section to follow.

To focus our study on the most important constraints on light axial vector explanations
of the 8Be anomaly, we adopt the following assumptions:

1. The light vector X has only axial couplings to quarks, and these couplings are gener-
ation independent to avoid flavor mixing.

2. Both vector and axial couplings to charged leptons are allowed for the light vector:

L � Xµ

X

i

¯̀
i

�
gVi �

µ + gAi �
µ�5

�
`i , (41)

where the sums run over the charged leptons of the Standard Model. These couplings
are again assumed to be generation independent.

3. The couplings of the vector boson to neutrinos vanish. This circumvents stringent con-
straints from electron-neutrino scattering experiments [33, 79, 80, 81], and guarantees
BR(X ! e+e�) = 1 in the absence of other light states.

With these assumptions, we compute the most significant constraints on light vectors due
their lepton and quark couplings.

5.1 Lepton Coupling Constraints

For a light vector X to explain the 8Be anomaly, its couplings to electrons must be large
enough that it decays inside the Atomki detector. As pointed out in Refs. [25], this implies

p
(gVe )

2 + (gAe )
2

e
& 1.3⇥ 10�5 . (42)

Beyond this basic requirement, the lepton couplings of a light vector are constrained by lepton
anomalous magnetic moments, beam dump searches, electron-positron collider experiments,
and tests of parity violation in Møller scattering.
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5.1.1 Anomalous Magnetic Moments

The anomalous magnetic moments of the charged leptons are a↵ected by a light vector that
couples to them. The corresponding shifts in ae,µ ⌘ (g � 2)e,µ for a general vector boson X
with both vector and axial couplings to leptons are [9]

�ae =
(gVe )

2

4⇡2

Z 1

0

dx
x2(1� x)

x2 + m2
x

m2
e

(1� x)
� (gAe )

2

4⇡2

m2
e

m2
x

Z 1

0

dx
2x3 + (x� x2)(4� x)m

2
x

m2
e

x2 + m2
x

m2
e

(1� x)

�aµ =
(gVµ )

2

4⇡2

Z 1

0

dx
x2(1� x)

x2 + m2
x

m2
µ

(1� x)
�

(gAµ )
2

4⇡2

m2
µ

m2
x

Z 1

0

dx
2x3 + (x� x2)(4� x)m

2
x

m2
µ

x2 + m2
x

m2
µ

(1� x)
.

(43)

In general, the axial coupling of a light vector to leptons leads to negative contributions to
their anomalous magnetic moments. In the case of the muon, where the SM prediction is
already lower than the measured value by about 3.4 � [82, 83], a light vector with purely
axial couplings to muons worsens the disagreement.

The interpretation of the measurement of aµ as a constraint requires some care, since a
naive application of the experimental result would also exclude the Standard Model. The
disagreement between measurement and the SM prediction is about 2.9±0.8⇥10�9 [82, 83].
To obtain a constraint from aµ, we demand that the contribution to �aµ from the axial vector
be less than the 2� uncertainty (in either direction) of the discrepancy between experiment
and the SM: |�aµ| . 1.6⇥ 10�9. For mX ' 17 MeV, this amounts to

���(gAµ )
2 + 9⇥ 10�3(gVµ )

2
�� . 1.6⇥ 10�9. (44)

Let us also emphasize that numerous proposals have been made to explain the disagreement
in aµ, and many of them invoke weak-scale physics that would not significantly alter the other
low-energy observables considered here. In this context, our requirement on |�aµ| from a light
axial vector corresponds to an absence of a strong cancellation with other contributions.

For the ae constraint, we impose �26⇥ 10�13 < �ae . 8⇥ 10�13 [84].

5.1.2 Electron Beam Dump Experiments

Light vector bosons can be produced at electron beam dump experiments [11]. For mX '
17 MeV, the most stringent constraint comes from the SLAC E141 experiment [85], which
requires [16, 33] p

(gAe )
2 + (gVe )

2

e
& 2⇥ 10�4. (45)

In this regime, the vector X would have decayed before reaching the detector. Other electron
beam dump experiments yield less stringent bounds on the couplings; see Refs. [25, 33] for
a more comprehensive discussion of these constraints.
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5.1.3 Electron-Positron Colliders

A light axial vector coupling to electrons can be produced at e+e� experiments. The KLOE2
search for e+e� ! X�, X ! e+e� sets a limit of [25, 33]

p
(gAe )

2 + (gVe )
2

e
. 2⇥ 10�3 (46)

for mX ' 17 MeV. The BABAR experiment also searched for e+e� ! X�, X ! `+`�, but
only down to mX & 20 MeV [86].

5.1.4 Parity Violating Møller Scattering

Mixed axial-vector couplings of X to leptons induces parity violation in Møller scattering.
This was studied in the E158 experiment at SLAC [87], and for mX ' 17 MeV produces the
constraint [33] ��gVe gAe

�� . 1⇥ 10�8 . (47)

Aside from aµ, this limit gives the the most stringent upper bound on lepton couplings in
the UV-complete scenario we discuss below.

5.2 Quark Coupling Constraints

Light vector bosons can be constrained further if they couple to both quarks and leptons, as
required to explain the 8Be anomaly. The two most important quark coupling constraints
on this scenario, and given our assumptions, come from ⌘ decays and proton beam dump
experiments.

5.2.1 Rare ⌘ Decays

New light particles can contribute to rare decays of the ⌘ meson. As discussed in Refs. [33,
88], the decay amplitude for ⌘ ! µ+µ� receives a new contribution from the axial vector
approximately proportional to gAµ (gu+gd�cgs) that interferes with the SM contribution. Here
c is a real O(1) number that depends on the precise values of the ⌘ � ⌘0 mixing parameters
used. This new contribution can produce a significant shift in the decay width for this
mode relative to the SM alone, which agrees with data to within about 1�. To determine
the corresponding constraint, we evaluate the ⌘ ! µ+µ� partial width following Ref. [88],
and demand that the net shift be less than the 2� uncertainty on the SM prediction. This
corresponds roughly to

gAµ (gu + gd � 1.5gs)

(mX/MeV)2
. 4⇥ 10�10. (48)

Note that this di↵ers slightly from the bound quoted in Ref. [33] obtained using a di↵erent
value for the ⌘� ⌘0 mixing angle; the impact of this di↵erence is negligible on the parameter
space of interest.
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See	also	Kahn	et	al,	2016	for	
detailed	discussion	of	constraints	on	
light	axial	vectors	
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A	light	axial	vector	can	be	a	viable	explana6on	of	the	8Be	anomaly		

Detailed	results	depend	on	rela6onship	between	leptonic	and	quark	couplings	

Figure 4: Quark level couplings required to explain the Atomki 8Be anomaly along with the
most important constraints in the UV complete scenario described in Section 6. For this specific
model, gu and gd lie along the dashed black line. The experimentally allowed region is indicated as
such, and includes values of the couplings consistent with an axial vector interpretation of the 8Be
anomaly, depicted by the hatched region.

the constraint of Eq. (40) on the 8Be⇤0 transition rate. We see from this figure that there
exists a small region of parameter space (with |gd| ⇠ 3 � 4 ⇥ 10�5) in which the light axial
vector provides a viable explanation of the 8Be anomaly and is compatible with all other
experimental constraints.

The strongest bounds on the theory tend to come from the lepton couplings of the light
vector. Since these are fixed in terms of the quark couplings by our choice of UV completion,
it is possible that there are other consistent UV models that are less constrained. Even more
parameter space could open up if the assumptions about the couplings of the light vector
listed at the start of Section 5 were relaxed. We postpone a more detailed investigation of
these considerations to future work.

Let us also point out that the most important limit on the quark couplings alone comes
from the Atomki measurements themselves [22], with the entire region to the upper right of
the hatched region in Fig. 4 excluded by their data (up to nuclear uncertainties). Should
the anomaly disapper in the future with more data, these constraints would become even
stronger. This again provides an important illustration of how precision nuclear measure-
ments can be used to study light vectors (and other particles) beyond what is possible with
other experiments.

23

Dominant	constraints	on	this	scenario	depend	on	
leptonic	couplings	and	are	highly	UV-dependent	

The	Atomki	null	result	for	8Be*’	places	the	
strongest	model-independent	constraint	on	the	
quark	couplings	

Relaxing	our	ini6al	assump6ons	could	poten6ally	
open	up	more	parameter	space	
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Rela6onship	of	couplings	shown	can	arise	in	a	UV	comple6on		

involving	a	dark	U(1)RH	and	two	Higgs	doublets	(see	Kahn	et	al,	2016)		

Figure 4: Quark level couplings required to explain the Atomki 8Be anomaly along with the
most important constraints in the UV complete scenario described in Section 6. For this specific
model, gu and gd lie along the dashed black line. The experimentally allowed region is indicated as
such, and includes values of the couplings consistent with an axial vector interpretation of the 8Be
anomaly, depicted by the hatched region.
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vector provides a viable explanation of the 8Be anomaly and is compatible with all other
experimental constraints.
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vector. Since these are fixed in terms of the quark couplings by our choice of UV completion,
it is possible that there are other consistent UV models that are less constrained. Even more
parameter space could open up if the assumptions about the couplings of the light vector
listed at the start of Section 5 were relaxed. We postpone a more detailed investigation of
these considerations to future work.

Let us also point out that the most important limit on the quark couplings alone comes
from the Atomki measurements themselves [22], with the entire region to the upper right of
the hatched region in Fig. 4 excluded by their data (up to nuclear uncertainties). Should
the anomaly disapper in the future with more data, these constraints would become even
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ments can be used to study light vectors (and other particles) beyond what is possible with
other experiments.
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Purely	axial	quark	couplings	+	vanishing	neutrino	
couplings	(there’s	tuning	here)	results	in:	

Also	require	vector-like	fermions	(+	dark	Higgses)			
to	cancel	anomalies.	LHC	limits	on	“anomalons”	
yield	upper	bound	on	couplings	(subdominant	to	
8Be*’	limit)			[Kahn	et	al,	2016]	

Matching to our previous notation, this implies

gu = �2gd, gAe,µ = gd, gVe,µ = 2gd (52)

where gd can be treated as a free parameter. As discussed in Ref. [33], demanding purely
axial couplings to quarks requires a tuning of ✏. Since our goal is simply to demonstrate
that viable UV complete axial vector scenarios explaining the 8Be anomaly exist, we will not
comment further on this issue here.

As it stands, the would-be U(1)RH gauge symmetry is anomalous. This can be corrected
by introducing new fermions charged under SU(3)c and U(1)RH to cancel the anomalies.
These new fermions, dubbed anomalons in Ref. [33], are vector-like under the SM gauge
groups but chiral under U(1)RH. They are assumed to obtain masses from the expectation
values of two dark Higgs fields, which will also contribute to the mass of the X vector boson.
Since the anomalons carry color charge, their masses must be larger than about a TeV to be
consistent with LHC searches. Demanding mX ' 17 MeV then implies that [33]

p
(gd)2 + (gu)2 .

⇣y 
4⇡

⌘
⇥ 10�4 (53)

in this setup, where y is the Yukawa coupling of the anomalon fermions to the dark Higgses,
assumed to be the same for both up- and down-type species.

Note that there are also potential constraints on the various Higgs bosons in this particu-
lar UV completion, as discussed in Ref. [33]. The two Higgs doublets coupled to SM fermions
are subject to the usual 2HDM constraints, which can easily be satisfied for a second doublet
with a mass of a few hundred GeV while remaining consistent with perturbative unitarity
considerations in the 8Be-favored region [33]. The dark Higgs bosons are SM singlets and are
more weakly constrained, coupling to the visible sector either through the X vector boson,
loops of anomalons, or Higgs portal-type interactions. We therefore expect that there is
enough freedom in the Higgs sector to straightforwardly satisfy the corresponding (highly
model-dependent) constraints.

6.2 Constraints on the Theory and the 8Be Anomaly

Within this UV complete light axial vector scenario, we can now connect the quark couplings
needed to address the 8Be anomaly to the many constraints on the theory that also depend
on lepton couplings. In Fig. 4 we show the most stringent bounds on the theory in the |gu|-
|gd| plane with gu < 0, gd > 0, and the lepton couplings fixed in terms of gd as in Eq. (52).
Imposing the additional relation gu = �2gd implied by the theory gives the dashed diagonal
line. We do not include the anomalon bound of Eq. (53) in the figure as the coupling
y < 4⇡ can be chosen such it does not constrain any additional parameter space. It would
be beneficial to re-visit and sharpen this bound in a more detailed phenomenological study,
however we defer this to future work. The hatched region in Fig. 4 indicates where the light
vector can account for the Atomki 8Be anomaly. This band was obtained by varying mX

and the nuclear matrix elements in Table 2 across their allowed ranges, while also imposing
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Results	stress	importance	of	complementarity	and	of	probing	both	quark	and	leptonic	couplings	



Future	Experiments	

Kozaczuk	 18	

Many	planned	experiments	should	have	an	impact	on	the		

light	(axial)	vector	scenario	

Lepton	Couplings:	
	VEPP-3,	DarkLight,	MESA,	Belle	II,	HPS,	APEX,	PADME…	

Quark	couplings:	
	LHCb,	ShiP,	SeaQuest	…	

Other	nuclear	decay	experiments	(including	independent	verifica6on	of	the	Atomki	
result!)		

See	e.g.	Feng	et	al,	2016;	Kahn	et	al,	2016	



Takeaways	

Kozaczuk	 19	

-A	light	vector	axially	coupled	to	quarks	can	explain	the	8Be	anomaly		

and	exist	in	a	viable	UV-complete	theory	

-If	the	anomaly	goes	away,	we	have	a	new	constraint	on	light		

axially-coupled	vectors	(already	have	a	new	constraint	from	8Be*’)	

-Important	to	target	both	lepton	and	quark	couplings	

-Are	there	other	nuclear	systems	that	can	be	useful	in	discovering	or		

constraining	light	new	vectors	that	are	otherwise	difficult	to	probe?	
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Backup	



Ab	IniFo	Predic6ons	for	8Be	

Kozaczuk	 21	

IM-SRG	calcula6ons	reproduce	the	observed	8Be	spectrum	

Figure 1: Experimental spectrum of 8Be labeled with total angular momentum and parity,
compared with calculated spectra using the following interactions and model space parameters (see
text for details). The shaded gray bands on the experimental spectrum indicate the width of the
state. The 1+ states of interest are highlighted in red. Binding energies in MeV are also given
beneath the ground states.

are much larger for the 8Be⇤0 (T ' 1) state than the 8Be⇤ (T ' 0) state. Note, however,
that these isospin assignments are only approximate and each physical state is a mixture of
isospin eigenstates.

Isospin mixing in this context is delicately sensitive to the energy splitting between the
two 1+ states, and to the isospin breaking terms in the interaction. As a result, it is di�cult
to calculate this isospin mixing fraction with high precision. However, since both the vector
(M1) and axial vector transition rates depend on the mixing, the two quantities become
correlated. We adopt the strategy used in Refs. [63, 74, 65] to predict the axial vector
matrix elements using their correlation with the isospin mixing and the known M1 transition
strengths.3

Let us denote the predominantly isoscalar 8Be⇤ and isovector 8Be⇤0 states by |Si and |Vi,
3The isospin mixing fraction is not an observable quantity, but it is a useful heuristic to understand

the correlation between the M1 and axial vector matrix elements. Using this correlation directly produces
similar results.
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A	UV	Comple6on	

Kozaczuk	 22	

Repurpose	model	from	Kahn	et	al,	2016	

RH	SM	fermions	charged	under	new	U(1)RH	
with	gauge	coupling	gD	

Kine6c	mixing	ε with	hypercharge

Require	two	Higgs	doublets	for	SM	fermion	
mass	terms:	

Require	vector-like	fermions	(+	two	dark	
Higgs	doublets)	to	cancel	anomalies	

Resul6ng	couplings:	

Thus, in the mass basis, the neutral current interaction in Eq. (??) becomes

gZ(Ẑµ � ✏tW Â0
µ)J

µ
NC ' gZ

�
Zµ + ✏tWA0

µ � ✏tWA0
µ

�
Jµ
NC +O(✏3) +O(✏m̂2

A0/m̂2
Z), (3.22)

where we recover the familiar cancellation of the A0 neutral current coupling to O(✏); the leading

A0 � A interaction in Eq. (??) survives the ⇣ rotation, so a light, kinetically mixed gauge boson is

properly a “dark photon” and not a “dark Z” boson. We see that this well known feature of A0�Z

mixing has the same origin as the cancellation of axial couplings presented in section ??, where we

considered the gDqH 6= 0, ✏ = 0 regime.

Although the minimal examples considered in this section yield only suppressed axial couplings,

they highlight the generic limits of axial U(1) models with gauge-invariant Yukawa interactions and

a single Higgs boson. Furthermore, the machinery and formalism developed in this section will prove

useful below where we consider extended Higgs sector models for which this cancellation no longer

takes place and unsuppressed axial couplings are generically present.

3.2. Scenarios with Two Higgs Doublets (2HDM)

We now construct a model which does result in unsuppressed axial couplings below the electroweak

scale. The full model contains several ingredients which control the vector and axial couplings of

SM fermions, some in a generation-dependent way. For pedagogical purposes we will build up the

model one ingredient at a time, with the full U(1)D group presented in section ??.

3.2.1. Generic Properties

Consider now a Type-II two-Higgs-doublet model (2HDM) where Hu, Hd and right-handed SM

fermions are charged under a new U(1)RH with gauge coupling gD.5 Charging the right-handed

SM fermions is a specific choice, but one which does not lead to an essential loss of generality.6

As in the single Higgs doublet model, the fermion U(1)D charges are related to the Higgs charges:

quc = �qHu and qdc = qec = �qHd
. With these charge assignments, the SM Yukawa terms are

invariant under U(1)RH :

LY,2HDM = yuHuQuc + ydHdQdc + yeHdLe
c + h.c. (3.23)

This group is anomalous under the SM, so we add anomalons U/Uc, D/Dc, and E/Ec which are

vector-like under the SM and chiral under U(1)D to cancel gauge anomalies. Furthermore, all

anomalons considered here are electroweak singlets, so there is only minimal impact on precision

electroweak observables. Two dark Higgses H 0
u and H 0

d are required in order to give masses to the

anomalons:

L = LY,2HDM + yUH
0
u UUc + yDH

0
dDDc + yEH

0
dEEc + h.c. (3.24)

The field content and charge assignments for this setup (shown in table ??) are chosen to guarantee

anomaly cancellation without contributions from additional dark sector fields. If qHu = �qHd
, we

5One could also consider a “flipped” 2HDM, where the same Higgs doublet provides masses for the up-type quarks

together with the charged leptons.
6A similar charge assignment was considered in [? ].
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As in the single Higgs doublet model, the fermion U(1)D charges are related to the Higgs charges:

quc = �qHu and qdc = qec = �qHd
. With these charge assignments, the SM Yukawa terms are

invariant under U(1)RH :

LY,2HDM = yuHuQuc + ydHdQdc + yeHdLe
c + h.c. (3.23)

This group is anomalous under the SM, so we add anomalons U/Uc, D/Dc, and E/Ec which are

vector-like under the SM and chiral under U(1)D to cancel gauge anomalies. Furthermore, all

anomalons considered here are electroweak singlets, so there is only minimal impact on precision

electroweak observables. Two dark Higgses H 0
u and H 0

d are required in order to give masses to the

anomalons:

L = LY,2HDM + yUH
0
u UUc + yDH

0
dDDc + yEH

0
dEEc + h.c. (3.24)

The field content and charge assignments for this setup (shown in table ??) are chosen to guarantee

anomaly cancellation without contributions from additional dark sector fields. If qHu = �qHd
, we

5One could also consider a “flipped” 2HDM, where the same Higgs doublet provides masses for the up-type quarks

together with the charged leptons.
6A similar charge assignment was considered in [? ].
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Field SU(3)c SU(2)L U(1)Y U(1)RH

Hu 1 2 +1
2 +qHu

Hd 1 2 �1
2 +qHd

uc 3 1 �2
3 �qHu

dc 3 1 +1
3 �qHd

ec 1 1 +1 �qHd

U 3 1 +2
3 +qHu

Uc 3 1 �2
3 0

D 3 1 �1
3 +qHd

Dc 3 1 +1
3 0

E 1 1 �1 +qHd

Ec 1 1 +1 0

H 0
u 1 1 0 �qHu

H 0
d 1 1 0 �qHd

Table 1. U(1)RH charge assignments for for a type-II 2HDM scenario. The SM fields Q and L are neutral
under U(1)RH . Three generations of fermions are understood.

After EWSB, hHui = 1p
2
(0, vu) and hHdi = 1p

2
(vd, 0), with v2 = v2u + v2d = (246GeV)2, so the

neutral gauge boson mass matrix is

1

2
(Ẑµ Â0

µ)

 
m̂2

Z �gD(qHuv
2
u � qHd

v2d)m̂Z/v

�gD(qHuv
2
u � qHd

v2d)m̂Z/v g2D(q
2
Hu

v2u + q2Hd
v2d) + m̂2

A0

! 
Ẑµ

Â0
µ

!
, (3.27)

where for now we have neglected the e↵ects of U(1)Y � U(1)RH kinetic mixing. This matrix is

diagonalized with a rotation angle ✓D, which satisfies

tan 2✓D =
�2gD(qHuv

2
u � qHd

v2d)m̂Z/v

g2D(q
2
Hu

v2u + q2Hd
v2d) + m̂2

A0 � m̂2
Z

. (3.28)

In the gD ⌧ 1, m̂A0 ⌧ m̂Z limit, this can be written as

sin ✓D ' ✓D ' gD(qHuv
2
u � qHd

v2d)

m̂Zv
=

2gD(qHuv
2
u � qHd

v2d)

gZv2
⌘ 2gD

gZ
✓̃D, (3.29)

where we have defined ✓̃D ⌘ (qHuv
2
u � qHd

v2d)/v
2 for future convenience. As in section ??, induced

A0 neutral current interactions arise from Ẑ � Â0 mixing after rotating into the mass basis:

ẐµJ
µ
NC = (cos ✓DZµ + sin ✓DA

0
µ)J

µ
NC '

✓
Zµ +

2gD
gZ

✓̃DA
0
µ

◆
Jµ
NC. (3.30)
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SM lepton e µ, ⌧

gV`
1
2gDqHd

� ✏e 1
2gDqHd

� ✏e

gA` �1
2gDqHd

�1
2gDqHd

Table 2. Axial and vector couplings for SM charged leptons in a 2HDM scenario. In the top-right entry,
the plus sign applies to cµV and the minus sign to c⌧V .

SM quark u, c, t d, s, b

gVq
1
2gDqHu + 2

3✏e
1
2gDqHd

� 1
3✏e

gAq �1
2gDqHu �1

2gDqHd

Table 3. Axial and vector couplings for SM quarks in a 2HDM scenario.

SM neutrino ⌫e ⌫µ ⌫⌧

c⌫ ⌘ c⌫V = c⌫A
1
2gD✓̃D

1
2gD(✓̃D + ) 1

2gD(✓̃D � )

Table 4. Neutrino couplings in a 2HDM scenario.

axial couplings become

cuA = �1

2
gDqHu +

1

2
gD✓̃D, cdA = ceA = �1

2
gDqHd

� 1

2
gD✓̃D (after EWSB), (3.31)

which are nonzero for generic values of vu and vd. Note that for qHu = �qHd
the mixing parameter

is ✓̃D = qHu and we recover the earlier cancellation from the single Higgs scenario in section 3.1;

in this regime, the two Higgs VEVs are aligned and there is only one source of EWSB (which only

gives mass to the Z boson) so m̂A0 ⌧ m̂Z limit approximately restores U(1)RH , which forbids axial

coupling to massive fermions.

3.2.3. Full U(1)D

By itself, U(1)RH leads to family-universal couplings of the SM fermions. However, the group

U(1)µ�⌧ is anomaly-free with respect to both the SM and U(1)RH , and the small breaking implied

by neutrino oscillations does not significantly impact the viable parameter space for the masses

considered here (in contrast to similar constructions involving the quarks). Its inclusion in the full

dark gauge group allows the consideration of generation-dependent vector couplings for SM leptons,

although their axial couplings are still fixed by U(1)RH , and thus remain generation-independent.

We are led to consider the dark gauge group

U(1)D ⌘ U(1)RH+(Lµ�L⌧ ) (3.32)

where  is a real parameter characterizing the relative importance of Lµ � L⌧ .8

We further allow for kinetic mixing between U(1)D and U(1)Y , parameterized by ✏. As dis-

cussed in section 3.1.2, such a module does not influence the axial couplings to leading order in the

8Other permutations of lepton number, U(1)e�µ and U(1)e�⌧ , are also possible, but their inclusion is easily

mimicked with the ingredients already at hand, and so we omit them without loss of essential generality.
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(neutrino	coupings	set	to	0)	


