Non-accelerator probes of light bosons The $^8\mathrm{Be}$ anomaly & a Protophobic 5th-force

Iftah Galon

University of California, Irvine

March 23, 2017

Iftah Galon - UC Irvine

March 23, 2017 U.S. Cosmic Visions: New Ideas in Dark Matter

Collboration

Jonathan Feng

Bart Fornal

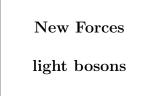
lftah Galon

Susan Gardner

Jordan Smolinsky

Tim Tait

Flip Tanedo


based on

- Phys.Rev.Lett. 117 (2016) no.7, 071803 ,arXiv:1604.07411
- Phys.Rev. D95 (2017) no.3, 035017, arXiv:1608.03591

Motivation - Complementarity

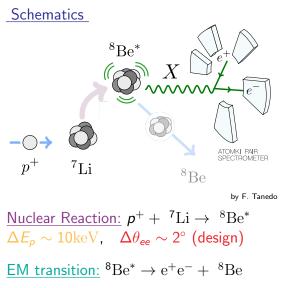
New Forces:

- Dark Matter ⊂ Dark sectors
- GUTs & EWSB
- ν 's and B-L
- light weakly coupled NP

Complementary to colliders \Rightarrow Low-Energy

Hints ?

- $(g-2)_{\mu}$
- Proton radius talk by Richard Hill

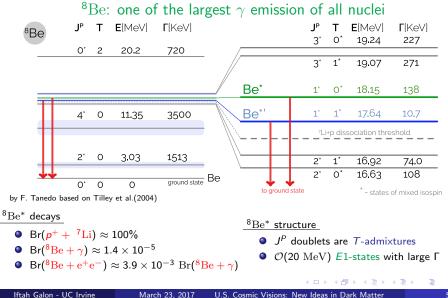

MeV-scale: Nuclear Physics

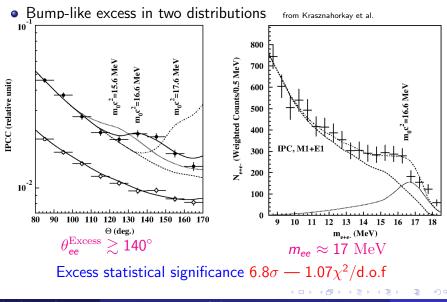
Treiman, Wilczek (1978) Donnelly, Freedman, Lytel, Peccei, Schwartz (1978) Savage, McKeown, Filippone, Mitchell (1986)

• KTeV:
$$\pi^0 \rightarrow e^+ e^-$$

- Khan Schmitt & Tait, arXiv:0712.0007 Khan Krnjaic, & Tait, arXiv:1609.09072

The Atomki Experiment


Experiment


Gulyás et al; NIM A808, 2016, 21-26

イロト イポト イヨト イヨト

Nuclear Structure of ⁸Be

The Atomki Result

- bump, not smooth excess, not a "last bin" effect
- excess in θ_{ee} and m_{ee} agree
- *M*1: 18.15 MeV ✓ 17.64 MeV ¥
- checks: $|y < \frac{1}{2}|, \quad E_{ee} > 18 \text{ MeV}, \quad E_p$ -scan, E1-contam, bkgs
- Excess statistical significance 6.8 σ 1.07 $\chi^2/d.o.f$ favors intermediate boson

- Nuclear Physics Theory New Phenomena ? talk by Xilin Zhang \Rightarrow Cannot account for ⁸Be signal Zhang & Miller arXiv:1703.04588 [nuc-th]
- Unknown Systematic Effect ?
 ⇒ other nuclear transition fit predictions
- Today: New Physics \implies X-boson

can be verified in upcoming & future experiments

•
$$m_X = 16.7 \pm 0.35(stat) \pm 0.5(sys)$$
 MeV

•
$$\frac{\Gamma(^{8}\mathrm{Be}^{*} \rightarrow ^{8}\mathrm{Be}+\mathrm{X})}{\Gamma(^{8}\mathrm{Be}^{*} \rightarrow ^{8}\mathrm{Be}+\gamma)} = 5.8 \times 10^{-6}$$
 $\frac{\Gamma(^{8}\mathrm{Be}^{*} \rightarrow ^{8}\mathrm{Be}+\mathrm{X})}{\Gamma(^{8}\mathrm{Be}^{*} \rightarrow ^{8}\mathrm{Be}+\gamma)} \approx 0$

- X must be an iso-scalar
- X is a boson, but is it a
 - Scalar, $J^{\pi}=0^+$ forbidden by J^P conservation
 - Pseudo-Scalar, $J^{\pi}=0^-$ Ellwanger & Morreti, arXiv:1609.01669
 - Vector, $J^{\pi} = 1^{-}$
 - Pseudo-Vector, $J^{\pi}=1^+$ talk by Jonathan Kozaczuk

Scalar ?

Spin and Parity in the decay

$$J^{\pi}(^{8}\mathrm{Be}) = 0^{+} \quad \Leftarrow \quad J^{\pi}(^{8}\mathrm{Be}^{*}) = 1^{+} \quad \Longrightarrow \quad J^{\pi}(\mathrm{X}) = 0^{+}$$

Total angular momentum conservation

$$J = L + S \longrightarrow L_{final} = 1$$

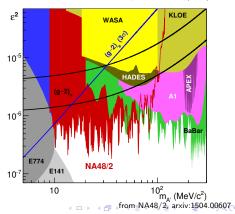
Then

$$P_{\text{initial}} = (+) \neq (-) = (+)(+)(-)^{L=1} = P_{\text{final}}$$

A Scalar is forbidden by parity

Iftah Galon - UC Irvine

Vectors


Is X a <u>Dark Photon</u>, A', kinetically mixing with $U(1)_{EM}$

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\epsilon}{2} F'^{\mu\nu} F_{\mu\nu} - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} \implies \mathcal{L}_{int} \supset \epsilon A'_{\mu} J^{\mu}_{EM}$$

NA48/2 search for $\pi^0 \rightarrow \gamma (X \rightarrow e^+ e^-)$: $\epsilon < (8 - 12) \times 10^{-4}$

No account for $(g-2)_{\mu}$

Holdom Phys. Lett. B166 (1986) 196

A Way Around \implies Protophobia

Assume

글▶ 글

Nuclear \implies Particle: EFT approach

Following Petrov and Blechman

$$\mathcal{L}_{int} \supset \sum rac{\mathcal{O}_d}{\Lambda^{d-4}},$$

- \mathcal{O} s contain fields ${}^{8}\text{Be}_{\mu}^{*}$, ${}^{8}\text{Be}$, X_{μ} , A_{μ} , derivatives ∂_{μ} , and $\epsilon^{\mu\nu\rho\sigma}$
- Os have definite spin & parity.
- expansion validity $\frac{r}{\lambda} \approx \frac{6 \text{ MeV}}{100 \text{ MeV}} \ll 1$

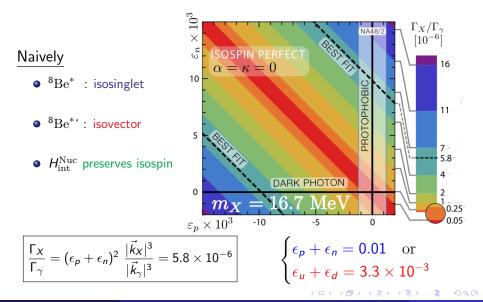
•
$$\left| \Gamma \left({}^{8}\mathrm{Be}^{*} \rightarrow {}^{8}\mathrm{Be} \mathrm{V} \right) = \frac{1}{3} \frac{|\vec{k}_{V}|}{8\pi m_{^{8}\mathrm{Be}^{*}}^{2}} |\langle {}^{8}\mathrm{Be} \mathrm{V} | \mathcal{L}_{\mathrm{int}} | {}^{8}\mathrm{Be}^{*} \rangle |_{\mathrm{spins}}^{2} \right|$$

$EFT \Leftrightarrow Microscopic Theory: Vectors$

$$V = \gamma, X$$

$$\mathcal{L}_{int}^{V} = \frac{e \, \epsilon_{V}}{\Lambda_{V}} \,^{8} \text{Be } \text{G}_{\mu\nu} \, \text{F}_{\rho\sigma}^{V} \, \epsilon^{\mu\nu\rho\sigma}$$

 $\begin{array}{l} \text{with } {G_{\mu\nu}} = \partial^8_\mu \mathrm{Be}^*_\nu - \partial^8_\nu \mathrm{Be}^*_\mu \\ \text{Note, EOMs: } \begin{cases} \partial^\mu F_{\mu\nu} = 0 \\ \partial^\mu \ ^8 \mathrm{Be}^*_\mu = 0 \end{cases} \text{Then} \end{array}$

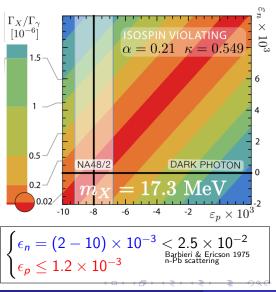

$$\Gamma_V \propto rac{e^2 \epsilon_V^2}{\Lambda_V^2} |ec{k}_X|^3$$

$${\cal L}_{int} \supset V_\mu J_V^\mu$$

$$J^{\mu}_{V} = e \sum_{f} \epsilon_{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f}$$

decompose into: J_0^{μ} , J_1^{μ}

IsoSpin Conserving Scenario


IsoSpin Violating Scenario

In reality

- ⁸Be* & ⁸Be*' : iso-admixes
- $H_{\rm int}^{\rm Nuc} \supset isospin$
- $m_X \gtrsim 17 \text{ MeV} \Rightarrow \text{lower rates}$ (allow ×10 smaller)

Nuclear Physics input:

Pastore et al. Phys.Rev. C90 (2014) no.2, 024321

Lepton Sector Constraints

At $m_X = 17 \text{ MeV}$

•
$$(g - 2)_e$$

 $|\epsilon_e| < 1.4 \times 10^{-3}$
• KLOE2 $e^+e^- \to \gamma X, X \to e^+e^-$
 $|\epsilon_e| < 2 \times 10^{-3}$
 ε_e
 $(g - 2)_\mu$ favored
 10^3

• TEXONO: $\nu - e \text{ scat.}$ $\begin{cases} \sqrt{|\epsilon_e \epsilon_\nu|} < 7 \times 10^{-5} (const.) \\ \sqrt{|\epsilon_e \epsilon_\nu|} < 3 \times 10^{-4} (dest.) \end{cases}$

• prompt decay $\leq 1 \ {
m cm}$ $|\epsilon_e| \geq 1.3 imes 10^{-5}$

• Beam dumps
$$\begin{cases} |\epsilon_e| > 2 \times 10^{-4} \\ |\epsilon_e| < 10^{-8} \end{cases}$$

$$e^{-10^{-3}}$$

 $(g-2)_{\mu}$ favored
 $(g-2)_{\mu}$ favored
 $(g-2)_{e}$
 $(g-2)_{e}$

Model Building - The benchmark

$$\begin{split} \epsilon_n &= \epsilon_u + 2\epsilon_d = (2 - 10) \times 10^{-3} \\ \epsilon_p &= \epsilon_d + 2\epsilon_u < 1.2 \times 10^{-3} \\ 2 \times 10^{-4} &\leq |\epsilon_e| \leq 1.4 \times 10^{-3} \ (g - 2)_\mu \text{ explained} \\ \sqrt{|\epsilon_e \epsilon_\nu|} &< 7 \times 10^{-5} (\text{const.}) \\ \sqrt{|\epsilon_e \epsilon_\nu|} &< 3 \times 10^{-4} (\text{dest.}) \end{split}$$

2

• gauge a global symmetry: $U(1)_B$, & kinetic mix. $\gamma - X$

 $\epsilon_{\psi} = \epsilon_{B} Q_{\psi}^{B} + \epsilon Q_{\psi}^{EM} \implies \begin{cases} \epsilon_{p} = \epsilon_{B} + \epsilon \\ \epsilon_{n} = \epsilon_{B} \\ \epsilon_{e} = \epsilon_{n} - \epsilon_{p} \\ \epsilon_{\nu} = 0 \end{cases}$

• $Q^{eff} \approx Q - B$ in the protophobic limit

For (ε_p, ε_n) ≈ (0.001, 0.002) & ε_μ ≈ ε_e partially accounts for (g - 2)_μ with mild O(%10) fine-tuning

• no ν coupling - strongest constraint, and no $X \rightarrow inv$

The $U(1)_B$ Model

• cancel anomalies: \implies Add matter

Wise et. al (2013), Fileviez Perez et. al (2013, 2014), Duerr et.al (2015)

- Constraints: LHC & LEP, Oblique Params. , $h \rightarrow \gamma \gamma$ decays
- Prospects: B-charged vector-like set of "leptons" ⇒ <u>DM</u>
- $U(1)_B$ SSB by $\langle S_B \rangle \approx 10~{
 m GeV} {0.002 \over |\epsilon_{\rm B}|}$ (unlike TeV models)

Promising Outlook to Verify/Exclude ⁸Be result

PADME

10

 ε_e

10^{- 3}

10

10⁻⁵

- ¹⁰B : 19.3 MeV
- ¹⁰Be : 17.79 MeV
- ${
 m ^4He} > 23~{
 m MeV}$ Leach & Brodeur
- ATOMKI new detector
- talk by Raphael Lang
- Isotope shift talk by Claudia Frugiuele
- PADME talk by Mauro Raggi
- HPS talk by Omar Moreno
- LHCb talk by Philip Ilten
- SHIP talk by Antonia di Crescenzo
- SeaQuest talk by Ming Liu
- DarkLight talk by Michael Kohl
- MMAPS (vis) talk by J. Alexander
- TUNL (HIGS facility γ Nuc)
- UK VdG
- TREK@JPARC K⁺ decays
- BESIII
- LHC prob UV

Be

HPS

100 m_X [MeV

Conclusions

- Big problems need solutions: Dark Matter (sector), GUT& EWSB, particle quantum numbers
- 6.8σ significance result (1.07 χ^2/dof) favors intermediate particle, a new boson X, at $m_X \approx 17 \ {
 m MeV}$
- NOT a dark photon, but could easily emerge from DM & GUT considerations.
- could account for additional anomalies like $(g-2)_{\mu}$, KTEV
- upcoming and future experiment are sensitive to X, and to Dark Sector particles at the EW scale.

Thank You

æ

E + 4 E +

Backup Slides

2

► < Ξ ►</p>

- Van de Graaff accelerator $\longrightarrow p^+$ beam , resolution $\mathcal{O}(100 \text{ keV})$ \longrightarrow generate known nuclear excited states on-resonance
- Relevant Nuclear Reactions

$$p^+ + {}^7\text{Li} \longrightarrow {}^8\text{Be}$$

$$E_p^{kin} = 1.03 \text{ MeV} \longrightarrow {}^8\text{Be}^* (18.15 \text{ MeV})$$

 $E_p^{kin} = 0.441 \text{ MeV} \longrightarrow {}^8\text{Be}^{*'} (17.64 \text{ MeV})$

ATOMKI Setup

- plastic scintillator $\Delta E E$ setup, position using: MWPC
 - 5 Telescope circular array, high efficiency $\approx 7 \times 10^{-3}$
 - large θ_{ee} coverage
 - $max(E_{ee}) \approx 18 \,\,\mathrm{MeV}$
 - $\Delta \theta = 2^{\circ}$ (design)
 - $\Delta \theta = 6^{\circ}$, beam position on target, calibration

from Gulyás et al; NIM A808, 2016, 21-26

Why a new boson ? Why $m_X \approx 17~{ m MeV}$

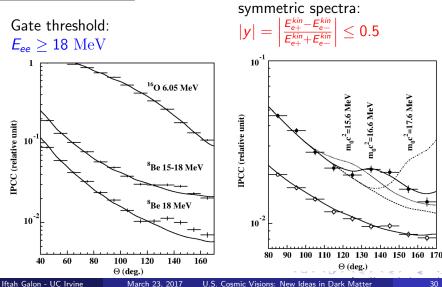
•
$$P_X(m_X \approx 17 \text{ MeV}) = 6.35 \text{ MeV}$$

•
$$\theta_{ee}^{min} = \operatorname{ArcCos}\left(\frac{P_X^2 - m_X^2 + 4m_e^2}{P_X^2 - m_X^2 - 4m_e^2}\right) \approx 140^{\circ}$$

•
$$m_{ee}$$
 shows a bump at $m_{ee} pprox m_X$

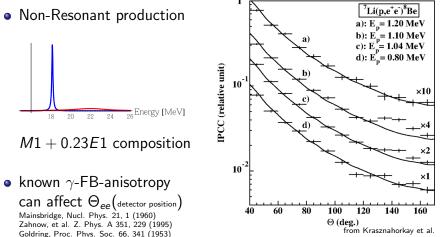
A (non-exhaustive) list of reasons to doubt

- Background sources ? γ s, Cosmic μ s
- Nuclear interference effects
- $\bullet\,$ Claims of various excess in $^8\mathrm{Be}$ in the past (de Boer et al.)
- $\bullet~{\rm The~Be}^{*\prime}$ state @ 17.64 ${\rm MeV}$


Tackling Skepticism 1 - Backgrounds

Dealing with backgrounds

- γ s mainly from target area scattering (γ -conversion),
 - suppressed by target design
 - reject using coincidence requirements in detectors
 - \bullet the effect does not appear in the 17.64 ${\rm MeV}$ state
 - the effect does not appear off-resonance
- cosmic μ s
 - shape estimated from off-time.
 - $\bullet\,$ scale: comparing and $E_{ee}>20\,\,{\rm MeV}$ during run to off-time
- Target composition LiF₂, LiO₂ known and understood


Tackling Skepticism 1 - Backgrounds

Verification and Cuts

Tackling Skepticism 2 - Interference Effects

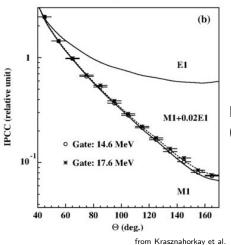
<u>E1 - M1</u>

Excess statistical significance 6.8 σ at $E_{p}^{kin} = 1.1 \text{ MeV}$

Iftah Galon - UC Irvine

Tackling Skepticism 3 - Past Experience

Too many past excesses


- de Boer et al.
 - 9 MeV in *M*1-transition in ${}^8\mathrm{Be}^{*\prime}$
 - 12 MeV boson in *M*1-transition in ${}^8\mathrm{Be}^{*\prime}$
 - E1-transition ¹²C and
- Krasznahorkay et al.: 13 MeV

Persuasive Arguments

- Better angular acceptance large θ_{ee} coverage
- Accounting for interference effects

Tackling Skepticism 4 - 17.64 MeV

The e^+e^- spectrum of the ⁸Be^{*'} does not exhibit an excess

Matches M1 + 0.02E1 composition (and excludes past excess claims)

Tackling Skepticism 4 - 17.64 MeV

• Angular systematic error $\Delta heta = 6^\circ
ightarrow \Delta m_{syst} = 0.5$ In total

$$m_X = (16.7 \pm 0.35(stat) \pm 0.5(syst)) \text{ MeV}$$

Consistent with $m_{\chi} = 17.55$ MeV at 1σ

Phase-Space suppressed decay

Comparing $\gamma \& X$: $\epsilon_{\gamma} = 1$

$$\frac{\Gamma\left({}^{8}\mathrm{Be}^{*} \rightarrow {}^{8}\mathrm{Be} + \mathrm{X}\right)}{\Gamma\left({}^{8}\mathrm{Be}^{*} \rightarrow {}^{8}\mathrm{Be} + \gamma\right)} = \epsilon_{X}^{2} \frac{\Lambda_{X}^{2}}{\Lambda_{\gamma}^{2}} \frac{|\vec{k}_{X}|^{3}}{|\vec{k}_{\gamma}|^{3}} = 5.8 \times 10^{-6}$$

But what are the Λs ?

Compare known results

$$\Gamma \left({}^{8}\text{Be} \rightarrow {}^{8}\text{Be} + \gamma \right) \Longrightarrow \Lambda_{\gamma} \approx 2 \text{ GeV}$$

But how to disentangle ϵ_X and Λ_X

Currents and Amplitudes

Conserved isospin limit \implies isospin doublet

$$N = \begin{pmatrix} p \\ n \end{pmatrix}$$

The isosinglet and isovector currents are

$$J_0^{\mu} = \bar{N}\gamma^{\mu}N = J_p^{\mu} + J_n^{\mu}$$
 $J_1^{\mu} = \bar{N}\gamma^{\mu}T^3N = J_p^{\mu} - J_n^{\mu}$

The EM current is

$$J_{EM}=eJ_{
ho}^{\mu}=rac{e}{2}(J_{0}^{\mu}+J_{1}^{\mu})$$

while X couples to

$$J_X^{\mu} = e_{EM} \epsilon_p J_p^{\mu} + e_{EM} \epsilon_n J_n^{\mu}$$

= $\frac{e_{EM}}{2} (\epsilon_p + \epsilon_n) J_0^{\mu} + \frac{e_{EM}}{2} (\epsilon_p - \epsilon_n) J_1^{\mu}$

Currents and Amplitudes

So that

$$\begin{split} \langle^{8}\mathrm{Be}|\mathbf{J}_{\mathrm{EM}}^{\mu}|^{8}\mathrm{Be}^{*}\rangle &= \frac{e}{2}\langle^{8}\mathrm{Be}|\mathbf{J}_{0}^{\mu}|^{8}\mathrm{Be}^{*}\rangle + \frac{e}{2}\langle^{8}\mathrm{Be}|\mathbf{J}_{1}^{\mu}|^{8}\mathrm{Be}^{*}\rangle \\ \langle^{8}\mathrm{Be}|\mathbf{J}_{\mathrm{X}}^{\mu}|^{8}\mathrm{Be}^{*}\rangle &= \frac{e}{2}(\epsilon_{\rho}+\epsilon_{n})\langle^{8}\mathrm{Be}|\mathbf{J}_{0}^{\mu}|^{8}\mathrm{Be}^{*}\rangle + \frac{e}{2}(\epsilon_{\mathrm{p}}-\epsilon_{\mathrm{n}})\langle^{8}\mathrm{Be}|\mathbf{J}_{1}^{\mu}|^{8}\mathrm{Be}^{*}\rangle \end{split}$$

In the limit that $^8\mathrm{Be}^*$ is pure isosinglet

$$\langle {}^{8}\mathrm{Be}|\mathrm{J}_{1}^{\mu}|{}^{8}\mathrm{Be}^{*}\rangle = 0$$

Hence

$$\Lambda_X = \Lambda_\gamma$$

Then

$$\frac{\Gamma (^{8}\mathrm{Be}^{*} \rightarrow \ ^{8}\mathrm{Be} + \mathrm{X})}{\Gamma (^{8}\mathrm{Be}^{*} \rightarrow \ ^{8}\mathrm{Be} + \gamma)} = (\epsilon_{p} + \epsilon_{n})^{2} \frac{|\vec{k}_{X}|^{3}}{|\vec{k}_{\gamma}|^{3}} = 5.8 \times 10^{-6}$$

with
$$|ec{k}_X|=6.35~{
m MeV},~|ec{
m k}_\gamma|=18.15~{
m MeV}$$

 $\epsilon_p + \epsilon_n = 0.01$

or

$$\epsilon_u + \epsilon_d = 3.3 \times 10^{-3}$$

æ

<ロ> (日) (日) (日) (日) (日)

Rates - Isospin Mixing & Violation

• States are isospin admixtures

$$\begin{cases} |^{8}\text{Be}^{*}\rangle = \beta|0\rangle - \alpha|1\rangle \\ |^{8}\text{Be}^{*\prime}\rangle = \alpha|0\rangle + \beta|1\rangle \end{cases} \qquad \alpha^{2} + \beta^{2} = 1 \end{cases}$$

• take into account isospin breaking, $\Delta T = 1$ suprion ۲

$$\begin{cases} {}^{8}\mathrm{Be}|\mathbf{J}_{\mathrm{EM}}^{\mu}|^{8}\mathrm{Be}^{*}\rangle & \propto & \beta M \mathbf{1}_{\mathcal{T}=0} - \alpha M \mathbf{1}_{\mathcal{T}=1} + \kappa \beta M \mathbf{1}_{\mathcal{T}=1} \\ & \langle {}^{8}\mathrm{Be}|\mathbf{J}_{\mathrm{X}}^{\mu}|^{8}\mathrm{Be}^{*}\rangle & \propto & (\epsilon_{p} + \epsilon_{n})\beta M \mathbf{1}_{\mathcal{T}=0} + (\epsilon_{p} - \epsilon_{n}) \left(-\alpha M \mathbf{1}_{\mathcal{T}=1} + \kappa \beta M \mathbf{1}_{\mathcal{T}=1}\right) \end{cases}$$

with

$$M1_{T=0} = 0.014(1)\mu_N$$
 $M1_{T=0} = 0.767(9)\mu_N$

Pastore et al., Phys.Rev. C90 (2014) no.2, 024321

Iftah Galon - UC Irvine

Rates - Isospin Mixing & Violation

One finds

$$\left|\frac{\Gamma_{X}}{\Gamma_{\gamma}} = \left|\frac{(\epsilon_{p} + \epsilon_{n})\beta M1_{T=0} + (\epsilon_{p} - \epsilon_{n})(-\alpha M1_{T=1} + \kappa\beta M1_{T=1})}{\beta M1_{T=0} - \alpha M1_{T=1} + \kappa\beta M1_{T=1}}\right|^{2} \frac{|\vec{k}_{X}|^{3}}{|\vec{k}_{\gamma}|^{3}}$$

э

-∢∃>

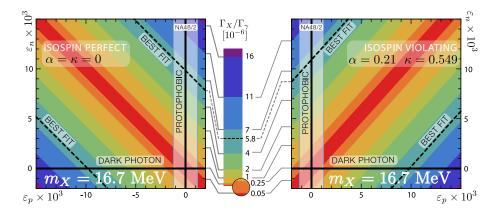
Anomalous Nucleon Magnetic Momemnts

Our theory is microscopic

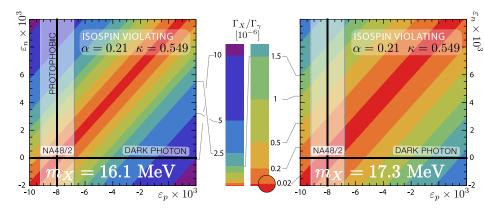
$$J_X^{\mu} X_{\mu} = e \left(\epsilon_u \bar{u} \gamma^{\mu} u + \epsilon_d \bar{d} \gamma^{\mu} d + \dots \right) X_{\mu}$$

Can be mapped to Nucleon level $N = \begin{pmatrix} p \\ n \end{pmatrix}$ " =" $\begin{pmatrix} 2u + d' \\ 2d + u \end{pmatrix}$ $\epsilon_p = 2\epsilon_u + \epsilon_d \qquad \epsilon_n = 2\epsilon_d + \epsilon_u$

$$\begin{split} J_X &- \text{vector current. Decomposed to vector current} \\ \begin{cases} J_0^\mu = \bar{N} \gamma^\mu N = J_p^\mu + J_n^\mu = J_u^\mu + J_d^\mu & \text{isosinglet} \\ J_1^\mu = \bar{N} \gamma^\mu T^3 N = J_p^\mu - J_n^\mu = J_u^\mu - J_d^\mu & \text{isovector} \end{cases} \end{split}$$


For the rate we calculate

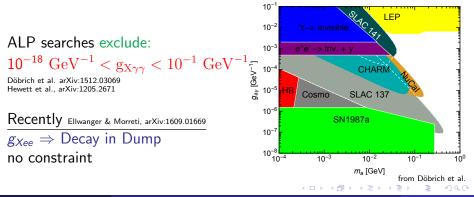
$$\langle {}^{8}\mathrm{Be}|\mathrm{J}^{\mu}_{\mathrm{X}}|{}^{8}\mathrm{Be}^{*}\rangle \Leftrightarrow \langle {}^{8}\mathrm{Be}|\mathrm{M1}|{}^{8}\mathrm{Be}^{*}\rangle$$


where M1 include all Nuclear & Nucleon level effects, including magnetic moments - which are <u>QCD dominated !</u>

Iftah Galon - UC Irvine

Plots

Plots


3. 3

Pseudo-Scalar (ALP)

Same approach

$$J^{\pi}(^{8}\mathrm{Be}) = 0^{+} \quad \Leftarrow \quad J^{\pi}(^{8}\mathrm{Be}^{*}) = 1^{+} \quad \Longrightarrow \quad J^{\pi}(\mathrm{X}) = 0^{-1}$$

Parity conserving: $P_{\text{initial}} = (+) = (+) = (+)(-)(-)^{L=1} = P_{\text{final}}$

- pure B L: $g_{B-L}\Big|_{m \sim 17 \text{ MeV}} < 2 \times 10^{-5} \implies \text{ cannot account for signal}$
- Axial vectors avoid π^0 decay bounds (Sutherland-Veltman) worry about
 - Matching to nuclear theory
 - Atomic Parity Violation constraints
 - enhanced contributions to constrained observables cf $\phi \rightarrow \eta X$ and $(g-2)_\ell$

The $U(1)_{B-L}$ Model

$$\epsilon_{\psi} = \epsilon_{B-L} Q_{\psi}^{B-L} + \epsilon Q_{\psi}^{EM}$$

$$\begin{cases} \epsilon_p = \epsilon_{B-L} + \epsilon \\ \epsilon_n = \epsilon_{B-L} \\ \epsilon_e = -\epsilon_p \\ \epsilon_\nu = -\epsilon_n \end{cases}$$

- Q-(B-L) in protophobic limit
- Anomaly free with ν_R s.
- For (ε_p, |ε_n|) ≈ (< 0.001, 0.002 0.008) fits ⁸Be and π⁰ constraint. Nontrivial ε_e in the correct range. & ε_μ ≈ ε_e (and also account for (g 2)_μ.
- ϵ_{ν} too large $\Rightarrow \nu$ -neutralization.

•
$$\langle h_X \rangle \approx 14 \text{ GeV} \frac{0.002}{|\epsilon_{\text{B}-\text{L}}|}$$
 breaks $U(1)_{B-L}$ and generates:
 $m_X, \ m_{\nu}^{Majorana}, \nu - \nu_D$ -mixing

Related Work

 Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus? Xilin Zhang, Gerald A. Miller. arXiv:1703.04588 [nucl-th] Light Axial Vectors, Nuclear Transitions, and the 88Be Anomaly By J. Kozaczuk, D. E. Morrissey, S.R. Stroberg. arXiv:1612.01525 [hep-ph] Light Weakly Coupled Axial Forces: Models, Constraints, and Projections By Yonatan Kahn, Gordan Krnjaic, Siddharth Mishra-Sharma, Tim M. P. Tait. arXiv:1609.09072 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.0198 [hep-ph]. Possible Explanation of the Electron Positron Anomaly at 17 MeV in ⁸Be Transitions Through a Light Pseudoscalar By Ulrich Ellwanger, Stefano Moretti. arXiv:1609.01696 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.0198 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong		
 arXiv:1612.01525 [hep-ph] Light Weakly Coupled Axial Forces: Models, Constraints, and Projections By Yonatan Kahn, Gordan Krnjaic, Siddharth Mishra-Sharma, Tim M. P. Tait. arXiv:1609.09072 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.0017198 [hep-ph]. Possible Explanation of the Electron Positron Anomaly at 17 MeV in ⁸Be Transitions Through a Light Pseudoscalar By Ulrich Ellwanger, Stefano Moretti. arXiv:1609.01669 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.0165 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be * → ⁸Be e⁺ e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	1	
 Siddharth Mishra-Sharma, Tim M. P. Tait. arXiv:1609.09072 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. Possible Explanation of the Electron Positron Anomaly at 17 MeV in ⁸Be Transitions Through a Light Pseudoscalar By Ulrich Ellwanger, Stefano Moretti. arXiv:1609.01669 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be * → ⁸Be e⁺ e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	2	
 Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. Possible Explanation of the Electron Positron Anomaly at 17 MeV in ⁸Be Transitions Through a Light Pseudoscalar By Ulrich Ellwanger, Stefano Moretti. arXiv:1609.01669 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be * → ⁸Be e⁺ e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	3	
 Ulrich Ellwanger, Stefano Moretti. arXiv:1609.01669 [hep-ph]. The Protophobic Light Vector Boson as a Mediator to the Dark Sector By Teppei Kitahara, Yasuhiro Yamamoto. arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	4	
 arXiv:1609.01605 [hep-ph]. The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter By Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	5	
 Yen-Hsun Lin, Fanrong Xu. arXiv:1609.07198 [hep-ph]. The new interaction suggested by the anomalous ⁸Be transition sets a rigorous constraint on the mass range of dark matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	6	
 matter By Lian-Bao Jia, Xue-Qian Li. arXiv:1608.05443 [hep-ph]. X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph]. Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	7	
 Neutrinophilic nonstandard interactions By Yasaman Farzan, Julian Heeck. arXiv:1607.07616 [hep-ph]. 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	8	
 10.1103/PhysRevD.94.053010. Phys.Rev. D94 (2016) no.5, 053010. X(16.7) Production in Electron-Positron Collision By Long-Bin Chen, Yi Liang, Cong-Feng Qiao. arXiv:1607.03970 [hep-ph]. Realistic model for a fifth force explaining anomaly in ⁸Be[*] → ⁸Be e⁺e⁻ Decay By Pei-Hong Gu, Xiao-Gang He. 	9	X(16.7) as the Solution of NuTeV Anomaly By Yi Liang, Long-Bin Chen, Cong-Feng Qiao. arXiv:1607.08309 [hep-ph].
[hep-ph]. Realistic model for a fifth force explaining anomaly in ${}^{8}Be^* \rightarrow {}^{8}Be\ e^+e^-$ Decay By Pei-Hong Gu, Xiao-Gang He.	10	
	1	
	12	

æ

(日) (同) (三) (三)

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T.J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV ($J^{\pi} = 1^+, T = 1$) state \rightarrow ground state ($J^{\pi} = 0^+, T = 0$) and the isoscalar magnetic dipole 18.15 MeV ($J^{\pi} = 1^+, T = 0$) state \rightarrow ground state transitions in ⁸Be. Significant enhancement relative to the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of $> 5\sigma$. This observation could possibly be due to nuclear reaction interference effects or might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70 ± 0.35 (stat) ± 0.5 (syst) MeV/ c^2 and $J^{\pi} = 1^+$ was created.

DOI: 10.1103/PhysRevLett.116.042501

Image: A math a math

э