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Big Picture

 We have passed through the electroweak scale,
completing the Standard Model

 Many deep, as yet unanswered particle physics

questions (neutrino masses? nature of the dark matter/exis-
tence of a nonminimal dark sector? inflation? dark energy?

baryogenesis?...) that require new ideas (hierarchy/CC
problems?...), new methods (new experiments to search for
DM?...), new measurements (neutrino masses, couplings,

cosmological history?...), and new computational tools
(mechanism that drives supernova explosions?...)



This Talk: “Supernova Constraints”

Supernova 1987A:

~ 99% of the grav. binding

energy of a collapsing blue

supergiant radiated away In

the form of neutrinos over
the course of ~ 10s

spacetelescope.org



http://spacetelescope.org

Why Supernova 1987A?

e Cooling phase is consistent with
analytic expectation

e ...but wouldn’t be if a new
“energy sink” competed with
Standard Model processes

e Limited amount of luminosity may
be diverted to novel particles <

bounds on new coupling with SM

Credit: Colin Legg
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This Talk: Dark Photons

vector boson of a new U(1) gauge group,
kinetically mixed with Standard Model photon

Dark photons get produced / absorbed in EM
interactions (~£2 as often as photons)
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Why Dark Photons?
“Top Down”

 The Standard Model contains three gauge groups
with two interesting breaking mechanisms

 Maybe there is a similarly complex dark sector

A massive dark photon appears in plausible,
nontrivial extensions of the Standard Model
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Why Dark Photons?
“Bottom Up”

“Natural” energy scales aren’t furnishing evidence
we hoped for; “energy frontiers” now seem far away

Dark sectors can be light if weakly coupled (new
lampposts?)

How can we investigate their properties?

e supernova = intense new particle source
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Novelties In this Work

* Finite temperature effects on dark photon mixing:
* resonance emission at low mixing
* decoupling behavior for low masses

 Thermal spectrum (blackbody emission) at large
mixing angle underestimates the true emission

* First attempt to understand systematic uncertainties
by varying progenitor profile
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Luminosity vs. mixing angle

Efficiently Produced
Efficiently Trapped
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Outline

|. Kinetic Mixing and Finite Temperature
Il Luminosity: Resonance and “Trapping”

l1l. Results and future directions
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Kinetic Mixing

gauge invariant product of field strengths

Al Ao

L2 eFunty™ /2 = NNaVaNVaVaVa

becomes L D eJ SMA/”

after diagonalizing gauge kinetic terms
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“Plasmas Give Photon a Mass”

high density of charge carriers modifies
the SM photon dispersion relation:

w® = k* + Rell(k*, w*, ne) w-wn

at low k, 'l equals the “plasma mass” wy

4dmran,

lim IT = w?(n,) ~
= wp(Me)




Coupling to Dark Photon

In vacuum:

LD GJSMA’“
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Coupling to Dark Photon

In vacuum:

LD GJSMA’“

In plasma:
€

JSMA/'“
- 1 —1I/m™” *

20



Rates for A’s

dark photon rates < SM photon rates:
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Rates for A’s

dark photon rates < SM photon rates:

2
€

1 —II/m'?

2T
€lp
(1 — Rell/m'?)? 4 (ImlI/m/'#)?

[*resonance if m’2>ImM and 3 wres With RelM(wres)=m’?]
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Photon Self-Energy

o (1 —v?) -iln(H”) B L

V2 20 1—o
ReH L sz _1 1—v—2 ln 1_|_U i = T
202 2V 1—v
) : (v=]k|/w)

different dispersion relations for L and T modes
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Photon Self-Energy

o (1 —v?) _iln(H”) B L

v2 2v 1—v
RGH: 352 i 5 g -
p |y [N U T
202 . 2V 1—wv i

Sy

different dispersion relations for L and I modes

ImI1 ~ rate at which photon thermalizes:
Imll = w (Fprod — Fabs)
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Outline

|. Kinetic Mixing and Finite Temperature
1. Luminosity: Resonance and “Trapping”

l1l. Results and future directions
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Outline

|. Kinetic Mixing and Finite Temperature
1. Luminosity: Resonance and “Trapping”
(low mixing) (high mixing)

l1l. Results and future directions
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Particle Luminosity

dl, = e "dP



Particle Luminosity

energy lost
In A’s per
unit time

dl, = e "dP
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Particle Luminosity

energy lost rate at which
In A’s per A’s are
unit time produced

dl, = e "dP
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Particle Luminosity

energy lost rate at which
In A’s per A’s are
unit time produced
=
q gy
odds of

escaping
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Power and Optical Depth

wrprod

differential power AP A3 L
Is the integral of == /
(2m)3

production rate: dV
not all power gets out Ryar
because of a nonzero 7 — / |ies (7“’ )dr’
“optical” depth: r

by detailed balance, MNorod = €T abs, SO calculate MNaps only
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Differential Luminosity

dL /d e2w3ve W/ TT s (w, ) e—€ J drTaps(w,r)
W

d—v e 2 ImlII(w,r) .

_|_

_1 Rell(w,r) |

m/'?

m'?
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Differential Luminosity

(for small €)
- L A 2
e“w3ve ”/TFabS(w,r)c e Jodr T (T
~ [ dw - e 5
1 Rell(w,r) ImIT(w,r)
m/2 —I_ m/2
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Differential Luminosity

(for ImMres<<m’2) (for small €)

dl A 2wlve=¥/IT, .. (w, ) _2 -1
S Wres -
dVv 0 + [ImIl(w,r)/m'2]"
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Differential Luminosity

(for ImMres<<m’2) (for small €)
dL 2w3ve ™/ TT yps(w, 1) _ 2 ~
— ~ AWres o
av 0 + [ImII(w,r)/m’'?]

rates cancel since Imll~I", AWres~I
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Differential Luminosity

(for ImMres<<m’2) (for small €)
dL 2w3ve Y/ TT o (w,r) _» <1
— ~ AWres o
av 0 + [ImII(w,r)/m’'?]

rates cancel since Imll~I", AWres~I

at low mixing, resonant luminosity is

Y NN SRRS SCENS)
dLyes o ET WU ~1089 erg/s (em’/MeV)>?

dV 2T (ew/ 4= 1) ~Ly (€/5x1079)2 (m’/MeV)?

36




Differential Luminosity

(for ImMres<<m’2) (for small €)
dL 2w3ve Y/ TT o (w,r) _» <1
— ~ AWres o
av 0 + [ImII(w,r)/m’'?]

rates cancel since Imll~I", AWres~I

at low mixing, resonant luminosity is

2 12, .3 3
bounds not flat % €N wreS/U ~1069 erg/s (em’/MeV)2
1%

ateliry T
in e-m’ plane 2 (e</T = 1) L, (e/5x1092 (m'/Mevy
37




Higher Mixing

at large mixing: T is large, dPres IS suppressed

differential luminosity dL = e "dP # dP
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Higher Mixing

at large mixing: T is large, dPres IS suppressed
differential luminosity dL = e TdP # dP

need to know I for all r and w
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dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t




dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t




dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t

42



dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t

43



dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t




dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t




dL/dV/dw/e>

R=10km, m’' =1 MeV

El
—
=
D)
=
~~—
N
~
3
~
e
~—
~
~
|\U
N&
S
<t




dL/dV/dw

=1 MeV

S
€
A4
o
—i
I
o

wooe 5 9
©o o o O
—~ = o~

sy - ASIN/T] OPAP /TP LT

47



dL/dV/dw

R=10km, m’' =1 MeV

changed
scale on
y-axis
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dL/dV/dw

volume emission!
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dL/dV/dw

volume emission!

— R =10 km
— R =30 km I
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dL/dV/dw

w(Wien peak) << w(real peak)
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—'dP

€

dl =

poddea 1, Apuatorgry

[syun -qae| Ajsourwunoy
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Outline

|. Kinetic Mixing and Finite Temperature
Il Luminosity: Resonance and “Trapping”

l11. Results and future directions
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Uncertainties

“fiducial model”
differs from sims
by ~O(10):

— fiducial - - Swesty 15M — Swesty 25M - - Fischer 11M — Fischer 18M

_ _ Possible values for Ry, | distance

value of R+ (important for optical
d th l Rfrs y d! 100 km
st U el 1000 ko
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Results

terrestrial

late
decays /

— fiducial
systematic
robustly excluded




Results

: 9
273953713 [ 'm,
17m.a*e? \ my

10s X (me/my)? x (1073 /€)?

late
decays /

— fiducial
systematic
robustly excluded



Results

273953713 [ 'm, -
" T TTmeate? (mv)

~ 10s X (me/my)? x (1072 /e)?

late
decays

(BF,, F" FogF®P — 14F), F* Fg, F’)

- 20%€
~ 45m4

L




Results
The Scattering of Light by Light*

RoBeErRT KARPLUST AND MAURICE NEUMAN
Brookhaven National Laboratory, U pton, Long Island, New York

(Received October 6, 1950)

FORWARD SCATTERING
RIGHT ANGLE SCATTERING
w‘z

w"

| 273653713 (m. \°
17Tmea’e? (mv>
~ 10s X (me/my)? x (1072 /€)?

w late /BBN—>

F16. 3. Differential cross section for scattering unpolarized lecays
light (cg system). The unit is 1.07XX 10" cm?/sterad; the unit

of energy is mc*. fro m -

10714 r Q02€
103 457712L

(BF,, F" FogF®P — 14F), F* Fg, F’)

m’ [MeV]
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Further questions:

“How thermal” are axions at large mixing?
What if A XX is on shell?

What other DM varieties can be constrained?

61



Dark Photon + Dark Fermions
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Dark Photon + Dark Fermions

can be on-shell or off
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Dark Photon + Dark Fermions

X
\\(;/

X / -
25< T
X ey p\\

does not simply
can be on-shell or off get reabsorbed!
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Dark Photon + Dark Fermions

2

167T,u§<6cvcme

Oc —
T
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Hadronic Axion

“How thermal” are axions at large mixing?

A (GeV)
10'710"%10"%10"*10"310"10" 10" 1¢® 10® 107 10° 10® 10 1¢® 10? 10" 10°

LSS 5 LSS LU S L L S UL S S L L S L O LR 5L S L SR

Dark Meller (pre-inflatior PQ phase lransition] XENON10) (gg. CFS2)

B——
NS in Ces A Hirt (@ann DFSZ) \ TelesoopeiEBL \ Beam Durmp
SN1987A (3, KSVZ) bun's in Superk

RG Hint Gs in GCs (gaes DFS2)

WDLF | Iint|:| WDLF (gpee DFE2)

Black Holes 7 Hint I@ HB Stars In GCs (g, DFSZ)

CASPETr ACMX ADMX 7.2 IAXO

Axion Mass mp (V)

IS this ruled out?
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Hadronic Axion

“How thermal” are axions at large mixing?

IA (GeV)
17,413

10'710"%10"*10"*10"%10"*10" 10" IC 10 107 10°® 10°® 10* 1¢® 10 10" 10°

LSS 5 LSS LU S L L S UL S S L L S L O LR 5L S L SR

Dark Meller (pre-inflatior PQ phase lransition] XENON10D (gpgqe CFSZ)

B—
NS in Ces A Hirt (@ FQZ) \ Telesoope‘EBL \ Beam Dump
SN1987A (3, KSVZ) bun's in Superk

‘WD | IintD

Black Holes 7. Hint

CASPETr ACMX ADMX 7.2

0“101010 10%10710¢10%12*10%10% 10" 1o° 10" 10° 10° 10 10% 10°
Axion Mass mp (V)

IS this ruled out?
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...and are
nuclear
effects

Included

here?

cf. Sigl, 1996;
Hanhart,
Phillips,

2{=Te [0 \VAP0[0]0)



Different Dark Sectors?

What other dark sectors can be constrained?
A'+DM (system could thermalize at high energy)
o miIIicharged DL\Y (DM couples to photon)
o Ieptophilic gauge boson (A’ only couples to e, y, V)

* |ight scalars (scalar portal? dark Higgs? A’hp production

doesn’t decouple)

e diffuse background?

68



Conclusions

Supernovae provide a unique “laboratory” for
weakly coupled physics

Kinetic mixing allows resonant production

Finite temperature effects are qualitatively
Important

Non-thermal spectrum in high-mixing regime
— conseqguences for other particles?
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