

Ultra-High Field Solenoids and Axion Detection

Mark D. Bird Director, Magnet Science & Technology NHMFL, Tallahassee, FL, USA

Iain Dixon, Seungyong Hahn, Denis Markiewicz, Huub Weijers

FIELD LABORATORY

- Introduction
- Existing Large-Bore / High Field Systems
- Future Ultra-High-Field / Reduced Cavity Size
 - High Temperature Superconductor (HTS)

National High Magnetic Field Laboratory

NSF

11.1 T MRI Magnet 400 mm warm bore

45 T Hybrid

DC Magnet

High B/T Facility 17 T, 6 weeks at 1 mK

900 MHz, 105 mm bore **NMR/MRI** Magnet

MagLab Technology in a Worldwide Context

This discussion focuses on RF cavity techniques in solenoid magnets

Axions within a resonant cavity in a strong magnetic field convert into photons

$$P_a = g_{a\gamma\gamma}^2 V B_0^2 \rho_a C_{lmn} \min(Q_L, Q_a).$$
 [1]

Magnet performance is given by

B²V

Cavity constrained by

- Field Homogeneity: B_{z,min} is 80 % 90 % of B_{z,max}
- Size limited by frequency, $f \propto 1/R_{cavity}$

mi©©

Size limited by cavity technology

[1] Sikivie, Nuclear Physics B, 87 (2000)

~~00 A ~~~00

Solenoids Present & Future

CICC = Cable-In-Conduit Conductor SRC = Stabilized Rutherford-Cable Mono = Monolithic Conductor

B ₀ ² V (T ² m ³)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
5300	CMS	Detector/Ti SRC	CERN	3.8	6	13	2660	>458 ¹
650	Tore Supra	Fusion/Ti Mono Ventilated	Cadarache	9	1.8	3	600	
430	Iseult	MRI/Ti SRC	CEA	11.75	1	4	338	
320	ITER CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	>50 ²
290	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	
250	Magnex	MRI/Mono	Minnesota	10.5	0.88	3	286	7.8
190	Magnex	MRI/Mono	Juelich	9.4	0.9	3	190	
70	45 T out	HF/Nb ₃ Sn CICC	MagLab	14	0.7	1	100	14
12	ADMX	Axion/NbTi mono	U Wash	7	0.5	1.1	14	0.4
5	900 MHz	NMR/Sn mono	MagLab	21.1	0.11	0.6	40	15

¹Materials only per BBC/CERN. ²US inner module \$50M per Minervini Italics indicates a magnet not yet operational ⁶

Optimization Route: Solenoids for Axion DM

High $B_0^2 V \longrightarrow$ Large Bore

- 1) Determine Maximum diameter of cavity or collection of cavities that is feasible. This sets the bore of the magnet.
- 2) Determine the maximum length of cavity or collection of cavities that is feasible. This sets the length of the magnet.
- 3) Increase magnetic field until financial limit is reached.

Today's Solenoids: Monolithic Conductors

B ₀ ² V (T ² m ³)	Magnet	Application/ Conductor	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
650	Tore Supra	Fusion/NbTi	Cadarache	9	1.8	3	600	
250	Magnex	MRI/NbTi	Minnesota	10.5	0.88	3	286	7.8
190	Magnex	MRI/NbTi	Julich	9.4	0.9	3	190	
12	ADMX	Axion/NbTi	U Wash	7	0.5	1.1	14	0.4
5	900 MHz	NMR/Nb ₃ Sn	MagLab	21.1	0.11	0.6	40	15

Monolithic, Bronze Route Nb₃Sn (900 MHz)

900 MHz, 21.1 T

@©tttt

ADMX 7 T

Julich 9.4 T

Italics indicates a magnet not yet operational.

Today's Solenoids: Stabilized Rutherford-Cable

ole		\mathbb{N}
rgv	Cost	

B ₀ ² V (T ² m ³)	Magnet	Application/ Conductor	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
5300	CMS	Detector/NbTi	CERN	3.8	6	13	2660	>4581
430	Iseult	MRI/NbTi	CEA	11.75	1	4	338	
12	ADMX	Axion/NbTi	U Wash	7	0.5	1.1	14	0.4

Italics indicates a magnet not yet operational.

¹Materials only per BBC/CERN.

NbTi Rutherford cable in Al coextruded & welded stabilizing channel (CMS: 19 kA 4 T)

Compact Muon Solenoid

Today's Solenoids: CICC

B ₀ ² V (T ² m ³)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
320	CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	>50 ²
70	45 T out	HF/Nb ₃ Sn CICC	MagLab	14	0.7	1	100	14
12	ADMX	Axion/NbTi mono	U Wash	7	0.5	1.1	14	0.4

Italics indicates a magnet not yet operational.²US inner module \$50M per Minervini.

Cable-in-Conduit Conductor (45 T: 10 kA, 14 T Nb₃Sn)

MagLab 45 T Hybrid

6

 $\bigcirc \bigcirc$

ITER Central Solenoid Module

Recent MagLab Hybrid Magnet Projects: Three CICC Coils with Common Conductors

 $B^2V = 36 T^2m^3$

(Outer Coil Alone)

Helmholtz Zentrum Berlin (HZB)	MagLab	Radboud University
Berlin, <u>Germany</u>	Tallahassee, FL	Nijmegen, <u>Netherlands</u>
13 T, 50 cm	13 T, 46 cm	12 T, 52 cm
4 MW	13 MW	24 MW
Neutron Scattering	High-Homogeneity	High-Field
Germany	NSF IMR-MIP, FSU, Germany, Netherlands	Netherlands
2014	2016	2018

Superconducting Materials for Magnets

 The High-Temperature Superconductors (HTS) REBCO, Bi2212, Bi2223 will superconduct at fields >100T.

- For >25 T Solenoids, HTS is required.
- At 4 K, extremely high combinations of field and current-density attained!

 (BI2212, Bi2223, & REBCO superconduct at > 100 T!)

2G YBCO Tape – SuperPower - 2007

Superconducting Magnets Over Time

For ~30 years, HTS test coils have been made.

SuperPower's REBCO tape from 2007 enables UHF user magnets.

32 T magnet is assembled at MagLab.

MagLab 32 T SC USER MAGNET

2003: 1st 25 T SC test coil 2008: 1st 35 T SC test coil 2015: 1st 27 T all-SC test

Total field	32 T
Field inner YBCO coils	17 T
Field outer LTS coils	15 T
Cold inner bore	32 mm
Current	172 A
Inductance	619 H
Stored Energy	9.15 MJ
Uniformity	5x10 ⁻⁴ 1 cm DSV

• Commercial Supply:

- 15 T, 250 mm bore LTS coils <u>Delivered!</u>
- Cryostat <u>Delivered!</u>
- (Dilution Refrigerator)
- In-House development:
 - 17 T, 34 mm bore YBCO coils <u>Assembled!</u>

NHMFL - 32 T Technology Development

42-62 Mark 1: 1st test coil

Ø124 42-62 Mark 2: 2nd test coil

20 - 70: 1st Full-featured Prototype

82 - 116: 2nd Full-featured Prototype

Ø232

NHMFL - 32 T All Superconducting User Magnet

- Cycled to high stress without ill effect:
 - 32 cycles 100% design stress
 - 106 cycles 110% design stress
 - 4 cycles 120% design stress
 - 1 cycle 135% design stress

- 2nd Prototype was tested in Aug. 2014 and June 2015.
- Included all features of real coils for 32 T except length.
- Intentionally Quenched >80 times without degradation.

NHMFL - 32 T All Superconducting User Magnet

- System is now fully assembled.
- Testing of protection system underway.
- Full Field April?

No-Insulation YBCO Coil Technology

• No-Insulation YBCO:

- By winding coils without insulation, coils can short during a fault mode.
- This requires less Copper in the winding pack which results in:
 - higher average current density which results in
 - <u>more compact magnets</u> which results in
 - lower stresses
- Coil quench at I_{op} =412 A (1580 A/mm²)

32 T < 200 A/mm²

No coil damage in 20-s "over-current" operation

<u>Similar concepts:</u> Partial-Insulation REBCO, Metal-Insulation REBCO, Low-Resistance REBCO, etc.

Assoc. Prof. Seungyong Hahn Florida State Univ.

NI-YBCO Test Coils

26-T/35-mm MW REBCO (2015, SuNAM/MIT/FSU)

- Coil OD: 172 mm
- Self-protecting at J_e of 392 A/mm²

World Record Field Produced by a Superconducting Magnet (April 2016)

- Total central field = 42.5 T
 - No-insulation coil = 11.5 T
 - Resistive magnet = 31.0 T
- Reached an astounding 1131 A/mm²
- HTS tape thickness = 42 μ m (5 μ m Cu)

Superconducting Magnets for Axion Detection

- Two example magnet designs are presented that utilize REBCO superconductors for magnet applications applied to axions
- Design Process
 - 1. Determine Maximum diameter of cavity or collection of cavities that is feasible.
 - Targeted relatively high frequency ~ 1.4 GHz
 - f = 23 GHz/cm (diameter of resonant cylinder, TM010 mode)
 - Starting point: 16 cm chamber diameter
 - 2. Determine the maximum length of cavity or collection of cavities that is feasible.
 - Chamber height = 2.2 × diameter
 - Homogeneity within chamber: $\underline{B}_{z,min} \ge 82 \%$ of $B_{z,max}$
 - 3. Increase magnetic field until financial limit is reached.
 - Starting point of <u>25 T</u>
 - 4. Squid amplifiers need shielded region 0.6 m (preferred) to 1 m (acceptable) above magnet
 - Same bore as magnet
 - B < 1 mT over 0.2 m axially at R=0.00 m
 - B < 4 mT over 0.2 m axially at R=0.04 m

Magnet Design Using HTS

32 T: 20+36 HTS DP modules Axion: 50 HTS DP modules

 $B_z^2 \times V = 4.8 T^2 m^3$

Shield coils 0.6 m above magnet (this version ±5 mT over 100 mm axiallycenter line only)

Yellow: HTS coil Red: Nb₃Sn coils Blue NbTi coils

Magnet Design Using HTS

CICC style LTS outsert, $B_z^2 \times V = 8 T^2 m^3$

32 T style LTS outsert

Axion Detector Magnet Comparisons

Л Л

	Cavity					
Style	Diameter (cm)	Height (cm)	Volume (m ³)	f (GHz)		
ADMX	50	100	0.196	0.46		
LTS Only	16	35.2	0.007	1.44		
HTS / 32 T Outsert	16	35.2	0.007	1.44		
HTS / CICC Outsert	16	35.2	0.007	1.44		

Style	B ₀ (T)	B ² ×V (T ² m ³)	HTS J _{AVE} (A/mm²)
ADMX	7.6	11.34	
LTS Only	19	2.5	
HTS / 32 T Outsert	26	4.78	207
HTS / CICC Outsert	33.5	7.94	149/138/137

- <u>1986 2006</u>: early development of a variety of HTS materials and test-coils.
- <u>2007 2016</u>: development of magnet-grade HTS conductors and first user-magnets (condensed-matter physics).

	Materials	High-Field User Magnets			
2007	High-Strength REBCO	2017	MagLab 32 T Ins-REBCO		
2013	High-Strength Bi2223	2017	Sendai 24.5 T Bi2223		
2016	High-Strength Bi2212	2017	MagLab 20 T NI-REBCO		

 <u>2017 – 2026</u>: propagation of HTS magnets into various applications (axion detection, neutron-scattering, pre-clinical MRI, NMR, human-MRI, 60 T hybrids, etc.)

Conclusion

On Behalf of the People Who Make the Magnets

<u>32 T SC Ma</u> H. W. V		<u>3</u>	<u>6 T SCH</u> M.D B	
W. D. Ma	<u>Analysis</u>	<u>Design</u>	Materi	
Analysis	<u>Materials</u>	I.R. Dixon	S. Bole	K. Ha
W.D. Markiewicz	D. Abraimov	A.V. Gavrilin	T. Adkins	J. Lu
A.V. Gavrilin	J. Lu	H. Bai	K. Cantrell	B. Wal
H.W. Weijers	D. McGuire	T. Painter	S. Napier	B. Godd
D. Hilton	B. Walsh	S. Marshall	A. Trowell	V. Toplo
P. Noyes	Fabrication	J. Toth	S. Gundlach	Instrur
Decian	T Painter	Y. Zhai	M. White	S. Han
Design	Z. Johnson	T. Xu	G. Miller	A. Po
A. vorali	B. Sheppard	Science		P. No
S. Gunulach	B. Jarvis	T. Cross		Bonning
S Role	G. Sheppard	W. Brev		
3. DOIE		I. Litvak		

<u>36 T SCH Magnet Project</u> M.D Bird, I. R Dixon

	<u>Materials</u>	Fabrication	Facilities
	K. Han	L. Marks	J. Kynoch
	J. Lu	R. Stanton	C. Rodman
	B. Walsh	D. Richardson	V. Williams
	B. Goddard	Leuthold	R. Lewis
	V. Toplosky	N. Walsh	W. Nixon
า	Instrument.	N. Adams	G. Nix
	S. Hannahs	L. English	J. Maddox
	A. Powell	J. Lucia	L. Windham
	P. Noyes	J. Deterding	
	Bonninghausen	E. Arroyo	

Thank You!

dixon@magnet.fsu.edu

NATIONAL HIGH AGNETIC FIELD LABORATORY