5–6 Jun 2017
Fermilab, Wilson Hall
US/Central timezone

Design of the Mu2e Straw Tracker Detector

6 Jun 2017, 17:15
15m
One West (Fermilab, Wilson Hall)

One West

Fermilab, Wilson Hall

Oral Presentation Muon Physics etc

Speaker

Manolis Kargiantoulakis (Fermilab)

Description

The Mu2e experiment in Fermilab will search for the coherent neutrinoless conversion of a muon into an electron in the field of an aluminum nucleus, improving sensitivity by 4 orders of magnitude over existing limits and indirectly probing new physics beyond the reach of current or planned high energy colliders. To achieve a single conversion event sensitivity better than 3e-17, the experiment requires a high precision measurement of the ~105 MeV/c electron momentum while reducing to negligible all background contributions in the signal window. The primary detector element is a low-mass straw tracker chamber, comprising ~21,000 thin straw drift tubes of 5 mm diameter, arranged in a 3 m long cylinder of radius 700 mm, and operated in a magnetic field of 1 T and in vacuum. The tracker is designed to reconstruct the momentum of conversion electrons with a resolution of <180 keV/c. The distance of an electron track from the straw sense wire must be extracted within 200 μm from a TDC timing measurement, while time division yields the hit position along the straw within 3 cm. The straws are also instrumented with an ADC for dE/dx capability to separate electrons from highly ionizing protons. We will present the status and design of the tracker and the scheme for its front-end electronics, which handles amplification, shaping, digitization and readout of the straw signals.

Primary author

Presentation materials