
AstroEncoder
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1. Scan data: 
Visual scan, arc-finding, 
catalog search


2. Obtain precise distances 
spectroscopic follow-up


3. Science!

1. Model lensing mass

2. Measure cosmological 

parameters


Applications of deep learning to cosmological data


Brian Nord (@iamstarnord)!
Fermilab + DES!
News Perspectives!
05 June 2017!



Preview
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‣ Deep Learning Methodologies


‣ Applications:


‣ Strong Lensing


‣ Stellar Spectrum Modeling


‣ Outlook: Challenges and Potential




Hype/Visibility Curve
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Rise of the machines
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Ecosystem
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deeplearningbook.org: Goodfellow, Bengio, Courville!



How do machines learn?
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Supervised!

• Convolutional Neural Networks

•  Support Vector Machine

•  Random Forest


Unsupervised!

•  Principle Component Analysis (PCA)

•  K-means clustering

•  t-Distributed Stochastic Neighbor 

Embedding (t-SNE)




•  Computational Neurons

•  operate on pixels that activate when 

presented with key features in images.

•  have weights (w) that are learned through 

training

•  receive feedback through test classifcation on 

validation test sets


•  Supervised Learning

•  Groups of neurons learns
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Training

1. Input:  

Images & Labels (lens or 
non-lens)


2. Convolution: 
Filters convolve images to 
produce feature maps


3. Feature Extraction 
(Pooling): 
Excise features that might 
be of interest


4. Test: 
Classify new set of labeled 
images using extracted 
features


5. Correct filter 
composition according to 
successful classification




Convolutional Neural Network: Overview


input! model! prediction!

cat!

dog!

?

•  Types of Layers

•  Convolutional: sharpens some features, blurs others.

•  Activation: highlights features

•  Pooling: collects (zooms in on) highlighted image regions

•  Dropout: removes overfitting neurons






Convolutional Neural Network: Convolution


Training

1. Input:  

Images & Labels (lens or 
non-lens)


2. Convolution: 
Filters convolve images to 
produce feature maps


3. Feature Extraction 
(Pooling): 
Excise features that might 
be of interest


4. Test: 
Classify new set of labeled 
images using extracted 
features


5. Correct filter 
composition according to 
successful classification


http://www.slideshare.net/hammawan/deep-neural-networks

•  have weights (w) that are learned through training

•  operate on pixels that activate when presented with key features in images.

•  Each layer neurons learns different kinds of features

•  the weights that are successful in identifying salient features are kept, while others are discarded.


• Each pixel in the blue filter is one parameter in the network model

• The resulting feature map is the result of the convolution.


blue filter


input image data


feature map






Convolutional Neural Network: Training


•  Computational Neurons

•  operate on pixels that activate when 

presented with key features in images.

•  have weights (w) that are learned through 

training

•  receive feedback through test classifcation on 

validation test sets


•  Supervised Learning

•  Groups of neurons learns
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Training

1. Input:  

Images & Labels (lens or 
non-lens)


2. Convolution: 
Filters convolve images to 
produce feature maps


3. Feature Extraction 
(Pooling): 
Excise features that might 
be of interest


4. Test: 
Classify new set of labeled 
images using extracted 
features


5. Correct filter 
composition according to 
successful classification


cat!
cat!

dog!

?!
✓ !

x
•  Minimize error (E) 

minimize error between prediction (f) and true label (y)


•  Stochastic gradient descent is typically used to optimize w 
by propagating the error back through each layer


•  Backpropagation trains weights

•  minimize error (E) between prediction (fw) and true label (y)


•  Keeps weights (w) that are good for the prediction




LeNet! AlexNet! VGG! GoogLeNet! Inception BN! Inception V3! ResNet!

Evolution of networks
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Deep Learning in Astro


1
1


1. Scan data: 
Visual scan, arc-finding, 
catalog search


2. Obtain precise distances 
spectroscopic follow-up


3. Science!

1. Model lensing mass

2. Measure cosmological 

parameters


Example applications


•  Work in coordination with

•  Irshad Mohammed (FNAL)

•  Adrian Price-Whelan (Princeton)




Path to the Modern Cosmological Paradigm
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State of the art constraints:

w0 = -0.957 ± 0.124    (~13%)

wa = -0.336 ± 0.552    (~164%)


Betoule++2014


w(a) = w0 + (1 - a)wa 

Evolving DE equation of state:


Structure 
Growth

+
Expansion

+
Geometry

Supernovae

Galaxy Distribution

CMB

State of the art constraints:

w0 = -0.957 ± 0.124    (~13%)

wa = -0.336 ± 0.552  (~164%)


Betoule+2014


w(a) = w0 + (1 - a)wa 

Evolving DE equation of state:


wa 

w0 

Dark Energy 
70%!

Baryons !
5%! Dark Matter!

25%!
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 courtesy Reidar Hahn


DECam installed in 2012




•  Properties that we measure
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ShapePosition Flux

Early DES Data



Basics of Gravitational Lensing

Thin lens approximation
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Strong Lensing Milestones!
•  1979: Quasar 

Twin Quasar SBS 
0957+561 
 

•  1986: arcs 
Cluster Abell 370  
 

•  1998: Einstein Ring  
Galaxy JVAS 
B1938+666  
 

•  2014: Supernova  
Cluster MACS 
J1149.6+2223  
 

•  Walsh, Carswell, 
Weyman 1979 

•  Lynds & Petrosian 
1986; Soucail
+1987 

•  King+1998 •  Kelly+2014 

• ~1000 lenses currently exist across all wavelengths

• ~2000 predicted for DES footprint

• ~120,000 predicted for LSST footprint




Deep Lensing: Lens Classification (Nord+2017, in prep.)


•  Simulations for Training Set

•  Training 15K objects; 50 epochs

•  Empirically motivated density and light profiles of sources and lenses

•  Mimic DES Survey characteristics: noise levels, exposure time, PSF, 

photometry, resolution
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Key goals/questions:

•  Can we remove humans from 

the search process?

•  How pure can we make our 

samples?

•  Can we pinpoint specific kinds 

of lenses (e.g., Jackpot lens) 
good for cosmology?


16’’ = 64pix



Deep Lensing: Classification results for sims


•  Simulated Training set

•  based on LensPop (Collett+2015)

•  Reproduces DES characteristics: 

noise levels, exposure time, PSF, 
photometry, resolution


•  Training sets:

•  4k lenses, 4k non-lenses

•  zlens = 0.5, zsource = 1.0


•  Software and Model:

•  Theano/TF + Keras on a laptop

•  3-layer neural net
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Key goals/questions:

•  Can we remove humans from 

the search process?

•  How pure can we make our 

samples?

•  Can we pinpoint specific kinds 

of lenses (e.g., Jackpot lens) 
good for cosmology?


Confusion matrix shows high 
precision and recall when 

testing on images NOT used for 
training.


•  >90% precision and 
completeness in 
simulations


<3% False-
positive rate


•  Software and Model:

•  Theano/TF + Keras

•  10-layer neural net with convolutions, max pooling and drop-outs


ROC Curve shows the accuracy as 
the threshold of probability for 

detection is incremented




Diagnostics:

Einstein Radius


•  False-identification 
rates are higher at 
small Einstein radius, 
where there can be 
more confusion in 
discerning source 
image from lens. 
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103!

102!

101!

100!
0.5! 1.0! 1.5! 2.0!

arcseconds!



What’s Inside?

•  Each column is a 

different object and its 
probability of detection 
in the network. 
Left: True positive 
Right: False positive


•  Convolution layers filter 
the images to highlight 
features


•  Pooling layers down-
sample images, 
efficiently reducing 
parameters for modeling


•  See also work by 
Lanusse+17, Trejillo+17 
for lens-finding with 
CNNs
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Input

Convolution

Pooling

Convolution

Pooling

True Positive False Positive
0.999 0.525 

True Positive False Positive
0.999 0.525 

Layers



DeepSpec: modeling stellar spectra (Nord, Price-Whelan+2017, in prep)


• Data: Apogee stellar spectra with labeled quantities

•  Teff, log g, metallicity (see Ness+2015)


•  1D ConvNets

•  3 convolution layer, 3 pooling, and 1 drop out layer

•  15 lines of (DL) code, a GPU and 40 minutes of compute time.
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Temperatures (Teff [K])


• Most predictions are < 1% 
error


• Still require methods to 
assess uncertainties on 
predicted Teff
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Ground Truth!

Pr
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• Caution:

•  data set construction

•  propagation of 

uncertainties

•  difference between 

training and test sets

•  Opportunity:  

data-driven approaches 
offer complementary 
techniques and insights 
for exploring big data
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Outlook




Extras
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Convolutional Neural Network: Convolution


•  Each computational neuron is 
an image filter, where wi is the 
value of a pixel in that filter and 
a model parameter


•  During convolution and 
activation, the model acts on the 
input image, highlighting 
features, such as edges or 
circles.
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Training

1. Input:  

Images & Labels (lens or 
non-lens)


2. Convolution: 
Filters convolve images to 
produce feature maps


3. Feature Extraction 
(Pooling): 
Excise features that might 
be of interest


4. Test: 
Classify new set of labeled 
images using extracted 
features


5. Correct filter 
composition according to 
successful classification


http://www.slideshare.net/hammawan/deep-neural-networks

•  have weights (w) that are learned through training

•  operate on pixels that activate when presented with key features in images.

•  Each layer neurons learns different kinds of features

•  the weights that are successful in identifying salient features are kept, while others are discarded.




Gravity (log g)

•  (same architecture)

•  large biases

•  architecture achieves very low 

losses

•  we may need more diverse training 

set.
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Star-galaxy classification (Kim+Brunner 2016)


•  Test on SDSS and CFHTLenS data

•  instead of using catalog data, operates 

directly on images.
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•  Generative Adversarial Networks 
offer an avenue to simulate 
realistic images of galaxies.


•  We currently lack the functionality 
to propagate errors with these 
frameworks, leaving us without 
estimates of noise, let alone the 
ability to track noise sources.


Galaxy Image Simulation (Schawinski+2017)
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Direct/immediate probabilitistic propagation not yet a typical feature of networks. Requires additional data munging!
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A Lonely Future

50 billion years"

in the future
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Unsupervised Learning


• Lenses on the 
inside, Non-lenses 
on the outside. 
well-separated by 
contour


•  t-SNE: algorithm 
for dimensionality 
reduction


Lenses Non-Lenses
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Backpropagation = Chain Rule
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compare 
prediction 

to truth!
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Dark Energy Survey
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