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MET events

I X
MET events are challenging to handlev
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Experiment Theory

* Only SM particles v.’s can be seen in the detector
-How do you identify the two chains?

* Xo's (WIMP) are invisible, i.e, momenta unknown (except P;sum)
- What about SM neutrinos among the x;’ s?
- How well can you reconstruct the WIMP momenta?

Measuring the unknown particle masses is a difficult problem.
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Mass measurement in MET events

What to do about unknown invisible momenta?

Ignore

Focus on the visible
sector only

-kinematic endpoint method
[Hinchliffe et al. 1997]

Use on-shell relations
and the MET constraint
to compute exactly

-Polynomial method
[Cheng et al. 2008]

Use an ansatz which

optimizes (min/max)
a suitable function of
the momenta

-MT2, M2 assisted method
[Cho,Choi,Kim,Park 2008]
[Kim, Matchev, Moortgat,
Pape 2017]
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— The classic endpoint method
.

* |dentify a sub-chain and form all possible invariant mass
distributions of different pairs of visible particles

J { {

A, B, C, D : unknown particles
D C B A j, | : visible known particle

* Measure the endpoints to solve for 4 masses {my, m,, mg ,m,}.
* There are 5 endpoints:

max max max max min
{my ™, M1 s M110)s Y1 (Ri)» T511(6> g)}

* 5 measurements, 4 unknowns. Should be more than sufficient.
Not so fast!
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v N

Mg, M, Mp my

* 5 measurements, 4 unknowns. Should be more than sufficient.
Not so fast!
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The variation of endpoint is

unnoticeable even with large —

statistics and no background.

Endpoint m; ..,

¢ This endpoint measurement is not

\/
*

independent.

(m3i ) = (mjiGs)* + (mg )7

My )™ is not that sensitive to
the test mass.
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Endpoint mj”(em/z)min
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— Trajectory IN Mass parameter space
—

 The two trajectories in mass parameter space leading to the same
endpoints m™®, m; ™, m,,,™* and mass of particle A.
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The flat direction (my(m,), mc(m,), my(m,), m,) in mass parameter
space can not be identified with the endpoint method.
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Try alternative method




S The phase space

* Our proposal: measure the phase space, do not project to lower
dimension. ; P

The Signal region
is compact, looks
like “Samosa”

MY DOCTOR SAYS MY HAIR
Loss 15 CAUSED BY ME
WORRYING ABOUT DATA Loss!

Ps

A
A

=
2\ *
%‘D ﬂ\ 3\ "
.
mp

[Kim, Park, Matchev 2015]

- Advantage: uses the maximal amount of information
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Project to 2D
—_—

Samosa Tortilla chip Tortilla strip




Samosa boundaries

.
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* The boundary of samosa is a 2D surface which depends— -, « &
on input masses. e
) 2
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Red solid line : true study point
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Surface fitting

* Design a global variable for surface fitting:

The gradient is

_ Js(ning e da|Vp(7) ———3.| largest at the
S, g, g, Mp) = ~oUAMENC M) ,
(M4, M5, M, p) da signal boundary

fg(mA amB ,’ﬁ’LC ,’ﬁ’LD)

* In order to compute the gradient or find signal boundary, we take
use of geometric properties of Voronoi tessellations.




— Surface fitting

I
* Design a global variable for surface fitting:

The gradient is

S (a1 ):fg(mA,mB,mc,mD)da|ﬁp(F)|—) largest at the
AT e TR = da signal boundary

fg(mA ,’ﬁ’LB 77;?"0 7mD)

* In order to compute the gradient or find signal boundary, we take
use of geometric properties of Voronoi tessellations.

* Voronoi (Dirichlet) Tessellation: a tessellation where each tile is
defined as the set of points closest to one of the pointsin a

discrete set of defining points (events)

Each Voronoi
cell has only 1
data point

First use of VT in HEP was in Fermilab by DO collaboration [hep-ex/006011]
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— Find good variable

* Use Voronoi tessellations in 3D to spot the kinematic boundary.

-Find a test statistic for signal (boundary cells) to be well-separated from
that of the background (non-boundary cells)




I Find good variable

* Use Voronoi tessellations in 3D to spot the kinematic boundary.

-Find a test statistic for signal (boundary cells) to be well-separated from
that of the background (non-boundary cells)

e A good variable: Relative standard deviation (RSD) of neighboring
cell volume.

I_Example: Flat boundary

1 (v = (V)
() \]% N1

Boundary cells have a big spread
in neighboring cell volume.




I Relative Standard Deviation plots
B

2D slices of 3D Voronoi tessellations of Signal+Background
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RSD is relatively larger for boundary cells (the black dashed line).
Thus RSD is a good variable to pick out the boundary cells.
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I Surface fitting
.

* Inorder to stay model independent we relate the gradient in the
surface fitting variable with the Relative Standard Deviation (RSD)

of Voronoi cells.

E(ﬁlA, ’ﬁ’I,B7 ?’7207 ,th) — fS(ThA,’th,fhc,th)

da |V p(7)

* Replace the gradient estimator function by

Vp(F)| — &; = RSD for i-th Voronoi cell

 The maximum of this variable is expected
to occur at the correct choice of masses
(m,, mg, me, mp).

fg(mA )Ifh’B ,"”hC )'fh'D)

da
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LA P 7>
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Red: correct guess of masses
Black: wrong guess of masses
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Mass parameter scan

B
* The mass parameter scan for S(ma, mp(ma), mo( na), mp(ma))
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The function peaks near true value of the particle mass
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— Detector effect
B

* Repeat with detector resolution
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The peak structure is preserved but degraded due to

detector resolution
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Include the two jets which
give smallest jet-lepton-
lepton invariant masses
i.e, 2 fold ambiguity

The peak structure is still preserved near the true mass
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— Closing remarks

B
* We have examined the classic endpoint method for particle mass

determination
-some measurements are not independent

-some are affected by experimental resolution

* Our proposed method takes advantage of full dimensional
information.

 We have tested our Voronoi-based algorithm for detecting the 2D
boundary surface and demonstrated that it can be usefully
applied in order to lift the degeneracy along the flat direction.

e Future direction-

- estimate the statistical precision of the mass measurement method.
- generalize to longer decay chain with more visible particles.
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Thanks for your attention!

Question?
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— RSD as a good variable

* Use Voronoi tessellations in 3D to spot the kinematic boundary.

-Find a test statistic for signal (boundary cells) to be well-separated from
that of the background (non-boundary cells)

e A good variable: Relative standard deviation (RSD) of neighboring
cell volume.
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