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Gravitational Waves
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SXS

Source: ligo.org



Credits: Jonah Miller

Laser Interferometer Gravitational-Wave Observatory     



Research

Explain all of the research you’ve done about this 
issue/challenge.

What was the goal of your research? Be sure to explain how 
you found it and anyone who might have helped you!



Aim: Enable Multimessenger Astrophysics
See electromagnetic waves Feel astro-particles
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Hear gravitational waves

LIGO, VIRGO, KAGRA, eLISA DES, LSST, JWST, WFIRST  IceCube (neutrinos)



Example of LIGO Data
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Numerical Relativity - Supercomputing
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Challenge
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Solution
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Bottleneck: Matched-filtering

 Solution: Deep Learning with Neural Networks



Artificial Neural Networks

Source: codeproject.com 11

Universality Theorem
Can model any function

Artificial Neurons
Weights (w) and bias (b)
Output = f(w . Input + b)

Activation
Nonlinear function (f)

Learning Algorithm
Backpropagation, steepest descent



Deep Learning

Overview

● Very long networks of artificial 
neurons (dozens of layers)

● State-of-the-art algorithms for image 
processing, natural language 
understanding, speech recognition, 
web search engines, self-driving cars, 
etc. 

Representation learning

● Does not require hand-crafted 
features to be extracted first

● Automatic end-to-end learning

● Deeper layers can learn highly 
abstract functions
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Source: 
https://cs231n.github.io/ 
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Convolutional Neural Networks



Data
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Smoothed noise spectrum - LIGO



Designing DNNs

Explored only simple designs.

Up to 4 dilated convolutional layers 
and 3 fully connected layers.

Separate Classifier and Predictor

Matched-filter: 1 convolutional layer
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Speed-Up
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Real-time analysis (milliseconds).

Constant time regardless of number 
of templates.

Thousands of inputs can be 
processed at once on a GPU.



Detection and Parameter Estimation
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Performance
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New Types of GWs

Eccentric, Spin-precessing

Not included in training.

Same accuracy of detection.

DNNs learned to generalize.

Not covered by current methods.
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Improvements

Developed automated framework for 
incorporating real LIGO noise while training.

Obtained ~ 1% error for high SNR.

Used mean absolute relative error loss.



Conclusion

1. Introduced a new method for directly analyzing highly noisy time-series data

2. Potential alternative to existing methods for LIGO data analysis

3. Need catalogs of massively-parallel numerical simulations for training data

4. Extensive scope for research on deep learning and AI for science

5. Can exploit rapidly growing advances in AI algorithms and hardware
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