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Learning Particle Physics by Example: Location-Aware Generative

Adversarial Networks for Physics Synthesis B i
Luke de Oliveira, Michela Paganini, Benjamin Nachman
(Submitted on 20 Jan 2017) "
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Background rejection in NEXT using deep neural networks B

NEXT Collaboration: J. Renner, A. Farbin, J. Mufioz Vidal, J.M. Benlloch-Rodriguez, A. Botas, P. Ferrario, J.J.

* A Convolutional Neural Network Neutrino Event Classifier

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle
1 (Submitted on 5 Apr 2016 (v1), last revised 12 Aug 2016 (this version, v3))

Convolutional Neural Networks Applied to Neutrino Events in a Liquid
Argon Time Projection Chamber

MicroBooNE collaboration: R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass,

MicroBooNE
Simulation + Data Overlay
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https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1609.06202
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1701.00008
https://arxiv.org/abs/1609.00607
https://arxiv.org/abs/1610.03088
https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1612.07725

" MACHINE LEARNING

ML techniques employed in many CMS analyses,
including the Higgs discovery.

CMS has a broad program of machine learning
applications for multiple tasks, including:

<2000
©
(51800

7 e - ¥
-E1200-

O C
u>.11000;
'8 800 ¢
E» 600+
© 400F
=

200

* Reconstruction
* PIDs and Tagging
* MC Generation

* Imaging Calorimetry

4 Hu::

110/

1410

—

- CMS Preliminary

— 1e-7TeV,L-511b"
I~ T \s=8TeV, |
©1600f%

~1400F

=531

—eo— 5/B Weighted Data
= S+B Fil
«eveee Bkg Fit Componant

C e

(3 20

120 140
m,., (GeV)
wer 1 [ - ___________________
_Iayer2m‘n-r ‘‘‘‘‘‘‘ ,‘" AAAAAAA - AAAAAAA -
layer 3 3 | = -
layer 4 ; ... : . : 1

Gregor Kasieczka, Tilman Plehn, Michael Russell, Torben Schell

(Submitted on 30 Jan 2017 (v1), last revised 16 May 2017 (this version, v2))

Deep-learning Top Taggers or The End of QCD?

* Tracking 1o 5 20 25 30 35 40
@ pixels
* Data Quality Monitoring
* Trigger
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convoLuTions

G |AN
NOVA has the first implementation of Convolutional Neural N POOLING

Networks on a HEP result, ]

* Advantage from extracting features to learn from, rather than :
learn from traditional reconstruction —
* CVN PID represented an equivalent increase of 30% exposure .

reconstruction. A Convolutional Neural Network Neutrino Event Classifier G |NCEPTION

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle OUTPUT
(Submitted on 5 Apr 2016 (v1), last revised 12 Aug 2016 (this version, v3)) -

NGEPTION OUTPUT 1 1

Ongoing program to incorporate deep learning for end-to-end
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nBooNE_ GNN'S FOR NEUTRINO EVENTS

MicroBooNE is exploring CNN implementations
On LAr-TPC for,' Gamma: 0.696 4—1 . 26.6 cm ‘

* Neutrino interaction detection 85% efficiency

MicroBooNE Simulation

* Multi-particle classification 83% efficiency for
electrons and 95% efficiency for muons

MicroBooNE Simulation
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Convolutional Neural Networks Applied to Neutrino Events in a Liquid

} | - - -
MicroBooNE | 251.1 om ! Argon Time Projection Chamber

Simulation + Data Overlay e N | MicroBooNE collaboration: R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass,

Fernanda ‘Psihas ‘New Perapectives - 2017 b b8


https://arxiv.org/abs/1611.05531

X-view
(127x50)

convX1 (8x3)

poolX1 (2x1)

convX2 (7x3)

poolX2 (2x1)

convX3 (6x3)

poolX3 (2x1)

convX4 (6x3)

poolX4 (2x1)

fcX (196)

dropoutX

u-view
(127x25)

convU1 (8x3)

poolU1 (2x1)

convU2 (7x3)

poolU2 (2x1)

convU3 (6x3)

poolU3 (2x1)

convU4 (6x3)

poolU4 (2x1)

fcU (196)

dropoutU

V-view
(127x25)

convV1 (8x3)

poolV1 (2x1)

convV2 (7x3)

poolV2 (2x1)

convV3 (6x3)

poolV3 (2x1)

convV4 (6x3)

poolV4 (2x1)

fcV (196)

dropoutV

- { X-View ) R { U-View | N W
£ %) N g ° z°
F o uclear Targets " o-:( ECAL & HCAL W S R AR R REEEE
Y o m— s e i
X100+ -Z¢j < o Sy | D004 — ey ':'" B 270 I S 0 I
g wf— - L\:"-;K il ol 11 1E |
I o] A \‘S,N’Q:" 5] 004 = |
0[ ol - ‘,jt wl |
g s g s
66 llllllllllllllllllllll 1 L 'YY"llfl'lllnlll'llY;
5m >
-
Target 5
Target 4
Water Target

Target 3 X

MINERVA uses a CNN with 3 prongs in order to combine information
from the X V & U views of the event.
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Varying network parameters they

€2 (11) # convLayers | Kernel Sizes ({h}xw) | Accuracy
accomplish 94% accuracy for vertex Three {6.6,3) x 3 93.58%
classification . . . . Four {8, 87, 6} X 3 94.09 %
IOCthOn n the V4 d”'eCthn. Five {8,7,7,3,3} x 3 93 55%
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‘Performance and ‘Robustness

Fernanda Psthas

Typical issue is how to show robustness in data.

» Data driven tests

* Training sample composition (to minimize biases

which you know of a priori)

and rough performance...

* Overall accuracy
*» Behavior of loss functions, etc

* Systematic uncertainties

How do we find the biases we have

introduced in our training?
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cnauring dependencies on the phyaica

TFernanda ‘Psthas

How can we make sure these algorithms

incorporate the physics that we know?

Can we develop tools to universally optimize
(NOT TUNE) for the physics we understand?
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CERNopenlab

http://openlab.cern/

https://amva4newphysics.wordpress.com/ httpS: iml.web.cern.ch/

2% Fermilab

50 Years of Discovery
Machine Learning
http://machinelearning.fnal.gov/
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http://machinelearning.fnal.gov/
https://iml.web.cern.ch/
http://openlab.cern/
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Community of analyzers at Fermilab

with an interest in ML applications Machine Learning

Mac Lear

http://machinelearning.fnal.gov/

ML at the Intensity and Cosmic Frontiers

Monthly Meetings

Publications The Inter-experimental Machine Learning Working Group
Upcoming Events for the Intensity and Cosmic Frontiers

Deep ML Journal Club

| ] [ [ [ ]
Next meeting is this Friday:
I The Inter-experimental Machine Learning Working Group brings together a community of analyzers of HEP data

who use and develop machine learning (ML) algorithms to solve physics problems. We share tools and
applications, provide training and discuss challenges related to the use of ML tools in the HEP community.

New to the Machine We hold regular meetings focused on tool development, knowledge transfer and common solutions to known
Learning group? challenges. Experts from multiple experiments provide feedback and encourage collaboration among members
in order to promote the use of ML tools in the community for problems for which they have been shown to be

o Subscribe to our mailing list: useful.
u n e at ° machinelearning@fnal.gov
We are part of the global HEP community. We believe that building community in an inclusive environment
Join the conversation advances knowledge transfer and promotes a more active community.
O n e We St HEPMachineLearning %

Our sister group, the Inter-Experimental LHC Machine Learning (IML) working group, is focused on building a
community of researchers in machine learning in particle physics that brings together interested people from

different experiments and external machine learning experts in academia and industry.

TO P I C: C N N Ap pl icati ons fo r H E P Monthly Meetings DeepHEP Journal Club Science and Applications
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MORE ML APPLICATIONS THIS WEEK!

Electron Neutrino Reconstruction in MicroBooNE Using Deep Learning Technique Mr. Victor GENTY [~

One West, Fermilab, Wilson Hall 10:00 - 10:15
Search For Sterile Neutrinos At The NOvA Near Detector Mr. Siva Prasad KASETTI ™
One West, Fermilab, Wilson Hall 11:45 - 12:00
NOvA Short-Baseline Tau-Neutrino Appearance Search Mr. Rijeesh KELOTH ™

One West, Fermilab, Wilson Hall 12:00 - 12:15

Progress of the Measurement of the Electron Neutrino Charged-current Inclusive Cross Section in Matthew JUDAH ™
NOvA

One West, Fermilab, Wilson Hall 17:45 - 18:00
Progress of the Charged Pion Semi-Inclusive Neutrino Charged-Current Cross Section in NOvA  Ms. Jyoti TRIPATHI et al.

One West, Fermilab, Wilson Hall 18:00 - 18:15
AstroEncoder: Applications of Deep Learning to Cosmological Data Dr. Brian NORD
One West, Fermilab, Wilson Hall 14:00 - 14:15
Deep Learning for Hidden Signals—Enabling Real-time Multimessenger Astrophysics Mr. Daniel GEORGE [
One West, Fermilab, Wilson Hall 14:45 - 15:00
Results From the Joint Fit to $\nu_e$ Appearance and $\nu_{\mu}$ Disappearance in NOvVA Ms. Shigi YU |7
One West, Fermilab, Wilson Hall 11:00 - 11:15
Sterile neutrino search in the NOvA Far Detector. Mr. Sijith EDAYATH
One West, Fermilab, Wilson Hall 11:15-11:30
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Next ML HEP
Breakthrough

“Science doesn't have to be a zero-
sum game. The key is to use
whatever influence you do have to
help your peers, and to trust that
your peers will do the same.”

Fernanda ‘Psihas ‘New Perapectives - 2017

J. TREGONING

march for science. It is time to channel this energy into shaping
cientific culture.

We all love to complain how the system for doing science thwarts
ideal practice. Researchers reap more rewards for publishing flashy
papers than for doing solid work, and the two do not always align.
Everyone ends up chasing trends and asking the same questions.
Broad, multidisciplinary research might achieve more in terms of
advancing science, but it is harder to publish and finance. We end up
sticking to the narrow path towards prestigious papers and big grants
at the expense of worthier endeavours.

Why don’t we change things? After all, science is uniquely
self-regulating. The people who hire scientists are scientists, the people
who allocate funding are scientists, and the peo-
ple who decide what gets published are scientists.
The tool we hold in highest regard is peer review:
we are judge, jury and executioner.

One reason for stasis is that we scientists value
consistency. The scientific process requires that
variables be controlled as tightly as possible,
even those that are unlikely to have any impact
on an experiment. I know people who won’t
change the order in which they use pipette tips;
they are unlikely to change scientific practice
more broadly.

Another reason is that we are too busy just

r I Vhousands of researchers took to the streets last month to

getting on in this system to pause to fix its flaws. 0 N E.

Urgent grant submissions and experimental

time points — tasks that reward the individual

and have strict deadlines — will always win against some important
but nebulous effort for the common good. It can feel as if those who
spend their time on anything but their own projects and papers will
find themselves scooped of the recognition required to win funding
and resources.

Worst of all is the sad reality that those who most feel the need for
change have the least power to effect it. The best time to fix the system,
we tell ourselves, is after we have gained influence. If a PhD student
shouts in frustration, are things going to change, or will she or he just
be marginalized as a rabble-rouser?

This pernicious inertia persists at every rung of the career ladder —
the higher scientists rise, the smaller seem the problems of those at the
level below. Gaining a tenured post puts researchers in a position to
make change, yet insulates them from much of what needs changing.
The principal investigator tells the postdoc that finding a permanent
position is easy compared to the angst of getting a grant. The postdoc
tells the PhD student that defending a thesis is easy compared to the
angst of finding a permanent position.

Evolutionary theory suggests a potential way out: reciprocal altruism.
Science doesn't have to be a zero-sum game. The key is to use whatever

ON SENIOR
COLLEAGUES, AND
DEFINITELY DON'T

WAIT UNTIL

No researcher is too junior
to fix science

4 [f young scientists plan to advance their careers before setting the systemright,
nothing will change, warns John Tregoning.

influence you do have to help your peers, and to trust that your peers
will do the same.

I have reaped the benefits of this approach. One simple example
was relinquishing a key authorship position on a paper to maintain a
productive collaboration. At the time, I felt that I was losing out by not
fighting hard enough in the struggle for credit. But the small sacrifice
paid off. I continued to work with my co-authors, and they invited
me to join them in writing what turned out to be a successful grant
application. The immediate reward of prime authorship would have
been less beneficial in the long run.

More broadly, as an early-career principal investigator, I have sought
out a group of like-minded colleagues. We consciously try to be less
self-centred and to support each other. In practice, this comes down to
small things that even those with pipetting rituals
can handle: we read each other’s drafts, accept our
fair share of committee posts so that no one has
an undue burden, and forward on relevant grant
announcements. We each try to work a bit more
towards a collective good: I happen to be enthu-
siastic about identifying broken stuff that every-
one else ignores (burnt-out lights, squeaky doors,
blocked sinks) and seeing that they get repaired.
Other colleagues run seminar series, take the
lead in teaching, interface between animal-care
facilities and researchers, or manage the labs that
require special biosafety precautions.

Reciprocal altruism can work more widely:
mentoring postdocs or connecting students with
careers outside academia, for example.

Don't wait on your senior colleagues, and definitely don’t wait until
you become one. Build a network of like-minded people. Identify
something that doesn’t work and fix it. It can be as small as a leaky tap
or as big as peer review. Idealism can be catching.

Science will always be competitive, but too narrow a focus on your

own advancement may come back to bite you. Academic promotions
and appointments to senior positions require recommendations from
colleagues. 'm sure I'm not the only one who has heard of ambitious
acquaintances not being considered for promotion because they have
stabbed too many people in the back.
s strive instead to stand together. One science historian called
last month’s science march unprecedented in its scale and breadth.
That energy and optimism need not dissipate — it should be
funnelled into making the system function better. The pay-off might
not be immediate, but let’s play the long game so that all can win.m

John Tregoning is a senior lecturer at Imperial College London,
where he studies the immune response to viral infections. He blogs at
http://drtregoning.blogspot.co.uk

e-mail: john.tregoning@imperial.ac.uk
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https://www.nature.com/news/no-researcher-is-too-junior-to-fix-science-1.21928
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