DUNE: Re-optimization of the LBNF neutrino beam

Rowan Zaki

Radboud University Nijmegen Supervisor: Laura Fields (Fermilab)

> New Perspectives June 6th, 2017

Outline

Motivation and Introduction

Optimizable parameters

Summary & Future plans

Rowan Zaki Re-optimization New perspectives 2 / 16

Conventional neutrino beamline designs

Figure: Conventional neutrino beam design

Rowan Zaki Re-optimization New perspectives 3 / 16

Optimization cycle

Figure: The optimization process

Rowan Zaki Re-optimization New perspectives 4 / 16

Reference design vs Current design

Figure: Neutrino flux for the CDR reference design and the current optimized design

 Current design provides significant higher flux than reference design

Rowan Zaki Re-optimization New perspectives 5 / 16

Reference design vs Current design

Figure: CP Sensitivity for the CDR reference design and the current optimized design

 Current design provides significant higher CP-sensitivity than reference design

Rowan Zaki Re-optimization New perspectives 6 / 16

Current state of the optimized beam design

Figure: The current state of the LBNF beamline (C. Crowley)

- A 2m long graphite target, which fits inside horn A
- Three magnetized horns (focusing elements) of different shapes and sizes
- A 200m long decay pipe

Rowan Zaki Re-optimization New perspectives 7 / 16

Optimizable parameters

Most parameters have already been highly optimized and are frozen

Figure: The current state of the LBNF beamline (C. Crowley)

- Proton momentum
- Target position
- Horn current
- Horn B position
- Horn C position

Rowan Zaki Re-optimization New perspectives 8 / 16

Optimizable parameters

Most parameters have already been highly optimized and are frozen

Example of a recent engineering change and a possible future upgrade

- Position of horn C
 - Distance between decay pipe window and horn C was too short for equipment
- 2 Target position

Rowan Zaki Re-optimization New perspectives 9 / 16

Horn structure

Figure: Beamline with decay pipe (C. Crowley)

Rowan Zaki Re-optimization New perspectives 10 / 16

Horn C position and neutrino flux

Figure: Influence of Horn C position on neutrino flux

 Moving Horn C upstream leads to a decrease in neutrino flux for 3-6GeV

Rowan Zaki Re-optimization New perspectives 11/16

Horn C position and CP-sensitivity

Figure: Influence of Horn C position on neutrino flux

 No significant changes to **CP-sensitivity**

Rowan Zaki Re-optimization New perspectives 12 / 16

Target position and neutrino flux

Figure: Influence of target position on neutrino flux

 Moving the target upstream leads to an increase in flux in 3.5-6GeV range

Rowan Zaki Re-optimization New perspectives 13 / 16

Target position and CP-sensitivity

 Moving the target 5cm upstream leads to an small increase in CP-sensitivity

Figure: Influence of target position on CP-sensitivity

Rowan Zaki Re-optimization New perspectives 14 / 16

Summary and outlook

- Change to horn C positions has little to no effect
- Horn C was moved 30cm upstream
- Target could be moved upstream by 5 cm
- Design is already highly optimized

Future plans

- Changes to the target design and cooling system
- Need a better understanding of the magnetic field between the conductors (Currently disregarding fringe fields, non-uniform currents, etc)

Rowan Zaki Re-optimization New perspectives 15 / 16

Back-up

Rowan Zaki Re-optimization New perspectives 16 / 16