Fermilab - New Perspectives 2017

Neutral Pion Reconstruction for NuMI at ME in MINERvA

Particle Reconstruction

Hits or Digits

Every registered particle interaction with the detector.

Clusters
Groups of neighbor hits.

Neutral Pion Identification

464850525456586062646668707274767880828486889092949698100102104106108110112114

Best Two Blobs

From all Good Blobs, select the best two candidates to be EM showers according to the closest value of the invariant mass

$$
m_{\gamma \gamma}=\sqrt{2 E_{1} E_{2}\left(1-\cos \Theta_{\gamma \gamma}\right)}
$$

Angle Scan

Look over "unused" clusters that are inside of a Cone "Volume" around to the interaction vertex. aka Found Blobs.

Cone Blobs

Clusters grouped by Angle Scan, each one most to have at least 2 views position for direction reconstruction, aka Good Blobs.

Signal Definition - MC

$$
\nu_{\mu}+N \rightarrow \mu^{-}+\pi^{0}+X
$$

Signal Definition:

* Negative Muon.
- At least 1 neutral pion
* No restrictions on baryons or other mesons

Once this kind of events are selected. This is the start point for the neutral pion reconstruction

Using TMVA-GA
 Toolkit for MultiVariable Analysis - Genetic Algorithm

Visible Energy vs Good Blobs

Best Two Blobs -EM Showers?

Blob aka shower
Cluster

- Hit

From MC

We can "track" down the shower:

1. Look for the particle that create the shower (closest hit to the interaction vertex).
2. Record the PDG code of it.

$x_{c h}=037 z_{x_{0}}$ Conversion Length

The EM showers selection seems to improve the pion selection, but the photon misidentification still being a problem.

dEdX helps a lot!, now we know that the EM showers are misidentified mainly by nontrackable pions and neutrons.

Neutral Pion Candidates

Applying a hypotheses test
Log Likelihood Ratio (LLR)

$$
L L R=-2 \ln \left(\frac{L(x \mid \gamma+\gamma)}{L(x \mid N o \gamma+\gamma)+L(x \mid \gamma+N o \gamma)+L(x \mid N o \gamma+N o \gamma)}\right)
$$

Some Results

Some Events Displays

X-View
U-View
V-View

Hit Maps

$5-1$																		
$0-1$																		

Final State
$\mu^{-}+\pi^{0}+\pi^{+}+n$
Sometimes the gamma showers travel close to each other. This selection can recognize it!!

Some Events Display

X-View
U-View
V-View

Hit Maps

Final State

$$
\mu^{-}+2 \pi^{0}+2 \pi^{ \pm}+n
$$

Sometimes multiple pi0s are created. This selection can recognize one of them!!

Some Events Display

X-View

U-View
V-View

Final State

$$
\quad \mu^{-}+0 \pi^{0}+3 \pi^{ \pm}+p
$$

Sometimes fake gammas are seeing as pi0 candidates. Hard to recognize them, (30% of the time)

Final Comments

* The selection is very promising, considering that I only used 25% of the MC POT for ME.
* MC POT Used: 3.27×10^{20}
* In a LE MINERvA analysis with 1304 events with neutral pions was selected with a purity of 55%.
* In this "dirty" scenario we can recognize 98803 events with at least 1 pi0 with a purity of 71%.
* According with MC, the neutral pion selection is showing:
* a preference of 66% of the signal events come with at least one charged pion.
* 84.2% of the background is dominated by charged pion production.

Backup

Invariant Mass

Best 2 shower candidates

After Conv. Length Cut

After dEdX Cut

Shower 1 Energy

Shower 2 Energy

Shower 1 Length

Shower 2 Length

More Results

Kinetic Energy

Angle wrt z-axis

Comments

- Slow pi0s seems to prefer be produced with at least 1 charged pion.
* The reconstruction favors the production of pi0s with $\mathrm{KE}<1 \mathrm{GeV}$.
- Most of the pi0s are produced forwards of the interaction vertex.

Even More Results

