

Fermilab - New Perspectives 2017

Neutral Pion Reconstruction for NuMI at ME in MINERvA

Roger Galindo Universidad Tecnica Federico Santa Maria. June 5th, 2017

Hits or Digits Every registered particle interaction with the detector.

Clusters Groups of neighbor hits.

2

Neutral Pion Identification

Best Two Blobs

From all Good Blobs, select the best two candidates to be EM showers according to the closest value of the invariant mass

 $m_{\gamma\gamma} = \sqrt{2E_1E_2\left(1 - \cos\Theta_{\gamma\gamma}\right)}$

Angle Scan

Look over "unused" clusters that are inside of a Cone "Volume" around to the interaction vertex. aka <u>Found Blobs.</u>

Cone Blobs

Clusters grouped by Angle Scan, each one most to have at least 2 views position for direction reconstruction, aka <u>Good</u> <u>Blobs.</u>

.....

Signal Definition - MC

 $\nu_{\mu} + N \to \mu^{-} + \pi^{0} + X$

Signal Definition:

- Negative Muon.
- At least 1 neutral pion
- No restrictions on baryons or other mesons

Once this kind of events are selected. This is the start point for the neutral pion reconstruction

Using TMVA - GA Toolkit for MultiVariable Analysis - Genetic Algorithm

Best Two Blobs -EM Showers?

From MC

We can "track" down the shower:

1. Look for the particle that create the shower (closest hit to the interaction vertex).

$X_{CH} = 0.375 X_0$ Conversion Length

The EM showers selection seems to improve the pion selection, but the photon misidentification still being a problem.

dEdX helps a lot!, now we know that the EM showers are misidentified mainly by non-trackable pions and neutrons.

Neutral Pion Candidates

9

Some Results

Signal Definition:

- Negative Muon.
- At least 1 neutral pion
- No restrictions on baryons or other mesons

Signal Selection

The events are selected with an efficiency of $\sim 5\%$ and a purity $\sim 71\%$.

This selection seems to favor RES events over DIS according with MC.

All events are selected only on plastic scintillator

Some Events Displays

X-View

U-View

V-View

Some Events Display

X-View

V-View

Final State $\mu^- + 2\pi^0 + 2\pi^\pm + n$

Sometimes multiple pi0s are created. This selection can recognize one of them!!

Some Events Display

X-View

U-View

V-View

Final Comments

- * The selection is very promising, considering that I only used 25% of the MC POT for ME.
 - * MC POT Used: 3.27×10^{20}
- * In a LE MINERvA analysis with **1304 events** with neutral pions was selected with a **purity of 55%**.
 - In this "dirty" scenario we can recognize 98803 events with at least 1 pi0 with a purity of 71%.
- * According with MC, the neutral pion selection is showing:
 - * a preference of 66% of the signal events come with at least one charged pion.
 - * 84.2% of the background is dominated by charged pion production.

Invariant Mass

Invariant Mass (MeV)

Shower 1 Energy

Shower 2 Energy

Shower 1 Length

Shower 2 Length

More Results

Comments

- * Slow pi0s seems to prefer be produced with at least 1 charged pion.
- * The reconstruction favors the production of pi0s with KE < 1 GeV.
- * Most of the pi0s are produced forwards of the interaction vertex.

Even More Results

