Cosmic Background suppression for a NuMI electron-neutrino crosssection measurement in MicroBooNE

Colton Hill on behalf of the MicroBooNE Collaboration New Perspectives 5 June 2017

The University of Manchester

Motivation - Why do we care about v_e ? MiniBooNE "Low Energy Excess" Events/Me/ 2.5 Neutrino Data (stat err.) 2.0 ve from μ΄ 、from K⁺″ from K 1.5 1.0 other Constr. Syst. Error – LSND/MiniBooNE ve-like excess - MiniBooNE 0.5 Events/MeV 1.2 Antineutrino 1.0 0.8 0.6 0.4 0.2 0.0 0.8 0.2 0.4 0.6 1.0 1.2

- Two key motivations:
 - was limited by the π^0 backgrounds.
 - We have limited data on ve interactions around 1 GeV.
- v_e cross section also critical for DUNE.

v_e Cross Section Measurements

- The few measurements of v_e CC cross-section were made by the Gargamelle, Minerva and T2K experiments.
- MicroBooNE is also well-equipped to measure the v_e CC cross section given its excellent spatial resolution and calorimetric capabilities.
- MicroBooNE's energy range is around 1 GeV.

MicroBooNE Detector

- MicroBooNE sits along the BNB and about 8° off-axis from the center of Neutrino Main Injector (NuMI).
- •TPC is "slow" so PMTs behind wire planes are used for triggering.

Wilson Hall

Colton Hill - University of Manchester

NuMI Beam at MicroBooNE

The GENIE generated v_e angles tell us from where along the NuMI beamline most of our neutrinos originate.

NuMI Beam at MicroBooNE

- Measurement from NuMI gives result independent of BNB "low-energy excess".
- •ve fraction is larger for NuMI (~5%) vs BNB (~0.6%).

GENIE Parent	NuMI Nue Flux at MicroB (Neutrino Mode)
K+	57.1%
K ⁰ L	41.2%
μ+	1.6%
Π+	0.01%

17 cm

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

True Deposited Shower Energy

- •For a cross section measurement we want to measure the shower energy.
- •QE events deposit on-average the most energy per shower.
- •Other mode's average deposited shower energy peaks below ~200 MeV.

Cosmic Rejection and v_e Selection

- MicroBooNE sits on the surface as such cosmic rays are a <u>significant</u> background.
- For every neutrino interaction we expect around 300 cosmic only events.
- Some of these will produce showers, looking like lone v_e interactions.
- Selection cuts focus on rejecting cosmics:
 - Optical Cuts
 - Topological Cuts

Optical Filter

- •The optical filter checks for two things:
 - A flash within the beam spill (the time we expect neutrinos to arrive).
 - One flash of at-least 50 photoelectrons.
- •This removes cosmic events which are "out of time".

Cut	$\nu_e \ CC \ \text{Pass Frac} \ (\%)$	Cosmic Pass Frac
Op Filter	93.1	7.6

Fiducial Volume Cut

- •As expected for the cosmic background, their vertices are concentrated in the top 30 cm of the detector.
- •Fiducial Volume: 10 cm from all sides, 30 cm from top.

Cut	$\nu_e \ CC \ \text{Pass Frac} \ (\%)$	Cosmic Pass
Reco in FV	87.6	4.6

Cosmic - Nue Candidate Reconstructed Vertex ZY

Nues - Nue Candidate Reconstructed Vertex ZY y [cm] v_e CC Simulation Work In-progress -100 200 400 600 800

Vertex-to-Flash

- We can combine optical and topological information to place a cut:
 - 2D distance between v_e shower-vertex and largest flash center - cut at 100 cm.
 - Edge in v_e spectrum at 100 cm results from PMT coverage granularity, and uncorrelated cosmic events w.r.t. beam flash position.
- This removes events where the shower is reconstructed far away from the largest flash in the event.

Cut	$\nu_e \ CC \ \text{Pass Frac} \ (\%)$	Cosmic Pass F
Vtx to Flash	80.0	0.4

ve-like Topology

- This analysis makes use of automated reconstruction algorithms (Pandora).
- Classification of a v_e-like topology requires:
 - At minimum one reconstructed shower.
 - A shower object associated to a neutrino vertex candidate with the greatest amount of TPC activity.

\mathbf{Cut}	$\nu_e \ CC \ Pass \ Frac \ (\%)$	Cosmic Pass Frac
Nue-like	63.4	0.01

Cosmic Proximity Cut

- This cut attempts to remove showers which result from a cosmic track (gamma / delta rays)
- \bullet If a v_e shower vertex is within a 5 cm radius cylinder, the event is cut.

Cut	$\nu_e \ CC \ \text{Pass Frac} \ (\%)$	Cosmic Pass Frac
Cosmic Prox	62.5	0.002

Reco Nue-like Shwr Vtx to Reco Cosmic-like

- •We demonstrate that the open cosmic background can be reduced by 4 orders of magnitude.
- •With these cuts we retain an efficiency of over 60%.
- •A number of important backgrounds will soon be included in the analysis (such as NC and muon neutrinos).
- A fully-developed v_e selection will be useful for further investigating the LSND/ MiniBooNE anomaly and future measurements on DUNE.

Conclusion and Summary

Cut	$\nu_e \ CC \ \text{Pass Frac} \ (\%)$	Cosmic Pass Fr
Op Filter	93.1	7.6
Reco in FV	87.6	4.6
Vtx to Flash	80.0	0.4
Nue-like	63.4	0.01
Cosmic Prox	62.5	0.002
		In Dro

In Progress

Backup Slides

Colton Hill - University of Manchester

T2K Differential Cross Section

 $d\sigma/dp ~(\times 10^{-39} \text{ cm}^2/\text{nucleon}/(\text{GeV}/c))$