

Adding collection efficiency to anode pixels

Philippe COTTE

February 1, 2017

Main question (reminder and update)

4mm without holes on LEM border + 0.5mm gap between anodes + screws and other imperfections

\Rightarrow Can influence the path of drifting electrons : some might be lost

Study

What is the impact on charge collection?

What had already been done

Qscan had been modified to ignore **borders**, i.e setting efficiency of **entire strips** at 0.

Most recent work

Pixelization of the Anode to allow definition of efficiency on pixels

What had already been done

Qscan had been modified to ignore **borders**, i.e setting efficiency of **entire strips** at 0.

Most recent work

Pixelization of the Anode to allow definition of efficiency on pixels

Remark

Pixels are "virtual", no physical equivalence. \Rightarrow not necessarily equivalent to two crossing strips. But **assumed to be** in this study.

960×960 strips anode

Anode with blind borders

(blind borders not represented anymore for sake of readability)

Charge on anode with diffusion

 \Rightarrow two pixels on borders

Physically, we will only see charge in strips

What the original program does:

 \Rightarrow can not kill all the charge!

What the original program does: What the modified program does:

 \Rightarrow can not kill all the charge!

Can kill the charge!

Killed Not Killed

What the original program does: What the modified program does:

Killed Killed

 \Rightarrow can not kill all the charge!

Can kill the charge!

Use blind borders to test pixelized method.

 \Rightarrow Original Qscan computes charge Strip by Strip (**SbS**), does not consider pixels.

 \Rightarrow Original method should see more charge than **pixelized** method when diffusion is taken into account.

Compare pixelized and SbS method.

Reminder

2 plots per method. *Border included* (no inefficiencies, **black**) and *border excluded* (inefficiencies on border strips, **red**)

Compare pixelized and SbS method.

Reminder

2 plots per method. *Border included* (no inefficiencies, **black**) and *border excluded* (inefficiencies on border strips, **red**)

Events

4GeV/c electrons, generated in the middle of fiducial volume, direction random on 4π .

 \Rightarrow Each electron crosses several anode borders

We expect :

With no diffusion and no inefficiencies: all 4 plots identical

No	ine	fici	enc	ies	: no	ot ki	llec

Simulation of 1000 electrons at 4GeV/c, no diffusion, no inefficiencies. **Left:** SbS **Right:** pixelized.

corresponds to expectations.

We expect :

- \blacktriangleright With no diffusion and no inefficiencies: \checkmark
- With no diffusion, but with inefficiencies: Both methods equivalent. Red and black histo different.

Checking consistency

Simulation of 1000 electrons at 4GeV/c, no diffusion, with inefficiencies Left: SbS Right: pixelized.

Charge at anode spectrum of single events

corresponds to expectations.

We expect :

- \blacktriangleright With no diffusion and no inefficiencies: \checkmark
- ► With no diffusion, but with inefficiencies: √
- with diffusion but no inefficiencies: Both methods still equivalent, red and black histo identical.

Checking consistency

Simulation of 1000 electrons at 4GeV/c, with diffusion, no inefficiencies Left: SbS Right: pixelized.

corresponds to expectations.

We expect :

- \blacktriangleright With no diffusion and no inefficiencies: \checkmark
- ► With no diffusion, but with inefficiencies: √
- ► with diffusion but no inefficiencies: √
- with diffusion and inefficiencies: SbS Border excluded should see more charge than Pixelized – Border excluded. Red and black histo different.

What the original program does:

 \Rightarrow can not kill all the charge!

What the modified program does:

Can kill the charge!

Checking consistency

Simulation of 1000 electrons at 4GeV/c, with diffusion, with inefficiencies Left: SbS Right: pixelized.

corresponds to expectations.

We expect :

- With no diffusion and no inefficiencies:
- ► With no diffusion, but with inefficiencies: √
- ► with diffusion but no inefficiencies: √
- ► with diffusion and inefficiencies: √

 $\mathsf{Pixelized} \Rightarrow \mathsf{method} \; \mathsf{works!}$

Pixelized method adds \sim 15% of computation time (\sim 30 minutes for 10 \times 100 4GeV/c electron events) We can work with that!

We can now assign a complete efficiency map to the anode.

- Compute the efficiency map by simulating electric field (Garfield+ANSYS) ▲
- Modify Qscan to take different sizes of efficiency pixels (independent on strip size)

Thank you!

Philippe COTTE | Effect of LEM border on collected charge