Status report on the work about light signal simulation

Anne CHAPPUIS – Isabelle DE BONIS – Dominique DUCHESNEAU – Laura ZAMBELLI

WA105 SB Meeting 08 February 2017

Introduction

• At last talk at SB meeting (7 December 2016):

Impact of the **updated geometry** on light signal collection

→ Loss of 60% of collected photons (due to the absorption on cathode wires and cathode supporting structure)

- We have continued to update the **implemented** geometry (extraction grid and ground grid)
- We have focused on the production of preliminary light maps
- Outline:
 - Impact of the **ground grid** on light signal
 - Preliminary maps
 - First results obtained with QScan

Status of the implemented geometry (LightSim)

Ground grid impact on light signal

Study done with 1mm-radius wires \rightarrow have to be redone with 2mm-radius.

Preliminary maps

- \rightarrow Now that the detector geometry is **updated** and **nearly fixed**, it gives the possibility to produce the **preliminary maps**.
- Preliminary LAr maps:
 - Large voxels definition: 250mmx250mmx250mm
 - Number of voxels: 24x24x29 = 16704 voxels
 - Cover a volume about 6mx6mx7m (from the LAr surface to the PMT array)
 - Number of generated photons per voxel: 10⁷
- Preliminary GAr maps:
 - Only one voxel in Z (photons generated between the LEM plates and the LAr surface)
 - Voxel definition: 250mmx250mm (576 voxels)
 - Number of generated photons per voxel: 10⁸
- ✓ To save time, photons are generated in ~1/8 of the detector, then we use the X-Y symmetry of the detector to reconstruct the whole map.
 - \rightarrow Simulation of 2262 voxels instead of 16704

Preliminary maps

Goals of these preliminary maps:

- Validation of the production procedure
- First studies with the updated geometry in QSCAN (specially PMTs configuration)
- Study of the final voxel definition
- Study of the time distribution parametrisation

For these maps: the time distribution is reconstructed using a landau fit (WA105 SB Meeting, 7 July 2016) (Reminder: for the old maps, reconstruction using an exponential fit)

→ Satisfactory in most cases

 \rightarrow Has to be **optimized** for remaining cases

First results on cosmic muons (with QScan)

 \rightarrow We implement these maps in QSCAN and look at the signal induced by cosmic muons (in 8ms)

→ Important loss of photons (mostly due to the absorption on cathode pipes and cathode supporting structure)

 \rightarrow The ratio between $N_{_{S1}}$ and $N_{_{S2}}$ photons is similar

WAH05

Impact of the PMT configuration on light signal

Comparison between the signal induced by **cosmic muons** for PMTs spaced by 1m and 65cm

PMTs spaced by 65cm

PMTs spaced by 1m

3000 5000 2500 4000 2000 3000 1500 2000 1000 500 1000 $\times 10^{3}$ (10^3) -4000-20002000 4000 6000 8000 0 -4000-20002000 4000 6000 8000 0 Time [ns] Time [ns] N_{S1} ∼0.17×10⁶ N_{S1}~0.26×10⁶ $N_{s2} \sim 6.2 \times 10^{6}$ N_{s2} ~4.1×10⁶

 \rightarrow Configuration with PMTs spaced by 65cm: the number of collected photons increases

 \rightarrow The ratio between N $_{\rm S1}$ and N $_{\rm S2}$ photons is similar

Impact of the PMT configuration on S2 signal

Comparison between S2 signal induced by cosmic muons for the two PMT configurations.

→ Ratio between the two histograms

 \rightarrow The ratio between S2_{65cm} and S2_{1m} is **constant** wrt time

Signal (S1+S2) induced by vertical muons

PMTs spaced by 65cm: increase of the number of collected photons, specially at the detector center.

- \rightarrow But risk to lose the tag efficiency for muon travelling in the detector edges ?
- → Study of the signal induced by 100 vertical muons travelling at 3 different positions in the detector

S1 signal induced by vertical muons

→ We look at the effect of the PMT configuration on S1 signal

- The difference between the two configurations decreases when the muons get closer to the detector edges
- In the worst case (muon in the detector corner), the two configurations are equivalent.

Detector border

700

600

500

800

900

Time [ns]

 10^{3}

 10^{2}

10

S1 Signal

Conclusion

- Preliminary maps have been produced
 - The implementation of the procedure is complete
 - First studies with **QScan**
 - \rightarrow Signals S1 and S2 induced by cosmic muons
 - \rightarrow PMTs positioning (with cosmic muons and vertical muons)
- With PMTs spaced by 65cm:
 - Globally increases the number of collected photons
 - For muons travelling near the field cage: no significant loss of collected photons (wrt PMTs spaced by 1m)

 \rightarrow To continue the cosmics study, the PMTs positioning needs to be decided Which configuration (1m, 65cm, or a mix ?)

Perspectives

Short-term

- Cosmics tagging
 - Threshold method (developed last year by Marie and Alessandra)
- Light maps
 - Updated pre-maps with **last geometry adjustments** (PMTs positioning, ground grid wire radius, etc)
 - Optimization of the time distribution parametrization
- 3x1x1 light maps
 - Begin the implementation of the 3x1x1 geometry in LightSim

Medium-term and long-term

- Cosmics tagging
 - Using the signal collected PMT by PMT
 - Efficiency dependence wrt important parameters (electroluminescence gain, absorption length, etc)
- 3x1x1 maps
 - Produce light maps for the 3x1x1 demonstrator
 - Comparison between simulations and light signal data
 - Study of **electroluminescence gain** (crucial for S2 simulation)
 - Study of parameters which are crucial for the light propagation (absorption length)
 - Difference between direct TPB coating and TPB plate above PMT

