Muon reconstruction efficiency studies in the 10kt dual phase geometry in LArSoft

Christoph Alt

February 8th, 2017 / WA105 Science Board meeting

ETH zürich

WA105 < < <

Muon reconstruction efficiency studies

 $\label{eq:Motivation: validate the implementation of the 10kt dual phase geometry and sim/reco chain in LArSoft$

Content:

- 1. Dual phase geometry in LArSoft and efficiency definition
- 2. Muon reco efficiency for isotropic muons & 'stitching'
- 3. Muon reco efficiency vs. muon direction
- 4. Conclusion and outlook

LArSoft config for simulation and reconstruction:

- standard 10kt dual phase .fcl's, including:
- Hits: 'GausHitFinder'
- Cluster: 'linecluster'
- Tracks: 'pmtrack'

Dual phase (workspace) geometry

Top view (anode view)

- 9 CRMs of 3x3 meters / 960x960 channels each
- Maximum drift: 12 meters

Christoph Alt

Muon reconstruction efficiency studies

Efficiency definition

- **Completeness**: energy fraction of the simulated muon that is in a reconstructed track
- **Purity**: energy fraction in a reconstructed track that comes from the simulated muon
- **Reconstructed muon tracks**: largest energy contribution of these tracks come from the simulated muon
- Leading reco muon track: Reconstructed muon track with highest Completeness
- Efficiency criteria (for leading reco muon track)
 - 1. Completeness \geq 50 %
 - 2. Purity $\ge 50\%$

3.
$$75\% \leqslant \frac{L_{reco}}{L_{truth}} \leqslant 125\%$$

Isotropic muons: data set

• 28400 $\mu^-,\,P_{\mu^-}=500$ MeV, stopping inside • Low statistics for large $\mid\theta_{YZ}\mid$

Slide 5 / 17

Isotropic muons: Completeness and L_{reco}/L_{truth}

Completeness:

Lreco/Ltruth:

э

► < Ξ ► <</p>

Efficiency: 93 % (26410/28400)

	# events	% total
Total events	28400	100 %
Good events	26410	93 %
Bad events	1990	7 %
No reco (muon) track	515	1.8%
$L_{reco}/L_{truth} < 75\%$	1419	5 %
Completeness $< 50 \%$	579	2%
$L_{reco}/L_{truth} > 125\%$	13	0.05 %
Purity $< 50\%$	6	0.02 %

• Focus on bad events that have a reco muon track (7 % - 1.8 % = 5.2 %)

 pmtrack splits muon into two (ore more) reco muon tracks if there is a kink in the truth track

# reco muon tracks	good events (93%)	bad events (7%)
0	0 %	25.9%
1	75.8 %	11.8 %
2	21.8 %	48.3%
3	2.2 %	13.2 %
≥4	0.2%	0.8%

- Solution for bad events: choose second reco muon track (reco muon track with second highest Completeness)
- \rightarrow Add up leading + second reco muon track ('stitching')

Isotropic muons: stitching

Completeness:

Leading reco muon track vs. second reco muon track (bad events):

- L_{reco}/L_{truth} : Bad events: Completeness (leading) vs. Completeness (second) Bad events: L_{reco}/L_{truth} (leading) vs. L___/L_{truth} (second) reco/L_{truth} (second) Completeness (second) 9.0 8.0 14 Entries 1240 Entries 1240 Mean x 0.5481 0.6016 0.3338 0.3617 12 Std Dev x 0.09782 0.1176 Std Dev v 0.0923 Std Dev y 0.1166 10 0.6 0.4 0.4 0.2 0.2 02 04 0.6 0.8 02 04 0.8 0.6 Completeness (leading) Lreco/Lituth (leading)
 - Completeness: leading + second $\simeq 1$ V
 - L_{reco}/L_{truth} : leading + second $\simeq 1$ V

Isotropic muons: stitching

Bad events: distance vs. angle b/w leading and second muon track

3D distance vs. 3D angle b/w closest endpoints of leading and second reco muon track (bad events):

Zoom Bad events: distance vs. angle b/w leading and second much track

- Most events have small angle and distance b/w the two tracks \checkmark
- Cluster at large angles due to ${\sim}180\,^\circ$ kinks in the reco at the end of one track (not understood) <code>X</code>

Christoph Alt

Isotropic muons: results after stitching

leading reco muon track \rightarrow leading + second reco muon track (stitching)

	# events	% total
Total events	28400	100 %
Good events	$\boxed{26410 \rightarrow \textbf{27596}}$	$93\% \rightarrow 97.2\%$
Bad events	$1990 \rightarrow \textbf{804}$	7% ightarrow 2.8%
No (muon) track	515 ightarrow 515	1.8% ightarrow 1.8%
$L_{reco}/L_{truth} < 75\%$	1419 ightarrow 260	5% ightarrow 0.9%
Completeness $< 50 \%$	579 ightarrow 226	$2\% \rightarrow 0.8\%$
$L_{reco}/L_{truth} > 125\%$	$13 \rightarrow 16$	0.05% o 0.06%
Purity < 50%	$6 \rightarrow 6$	$0.02\% \rightarrow 0.02\%$

- $\bullet\,$ Stitching increases efficiency by $4.2\,\%\,$
- 94 % of the 804 bad events left after stitching have 0 or only 1 reco muon track \rightarrow can not be recovered with stitching

Reminder: dual phase workspace geometry

Top view (anode view)

Side view

Isotropic muons: efficiency map after stitching

- Large errors for large θ_{YZ} (due to low statistics)
- black boxes: muon is seen only a few wires in one view
- red circles: muon along drift direction
- Focus on blue box: $\theta_{YZ} = 0^{\circ}$, $0^{\circ} \leqslant \theta_{XZ} \leqslant 90^{\circ}$

Christoph Alt

Slide 13 / 17

Efficiency vs. muon direction ($\theta_{YZ} = 0^{\circ}$)

- Each dot: 1000 μ^- with $P_{\mu^-} = 500 \text{ MeV}$ binomial error: $\sigma_{\mu^-} = \sqrt{\varepsilon \cdot (1 - \varepsilon)/1000}$
- Track splitting increased & lower efficiency for $\theta_{XZ} \rightarrow 90^{\,\circ}$
- Pick two example events: $\theta_{XZ} = 0^{\circ}$ and $\theta_{XZ} = 90^{\circ}$

Christoph Alt

Example events (raw data):

- isochronous
- muon is seen by only a few wires in view 2
- $\rightarrow\,$ problem for track reco

- not isochronous
- muon is seen by only a few wires in both views
- ightarrow problem for hit finding

- Efficiency for isotropic muons: 97.2% (close to 100% for non-problematic directions)
- Problematic directions: along a few wires in one view (problem: track reco) & along drift direction (problem: hit finding)
- \rightarrow start working on hit finding without deconvolution in dual phase

Thanks for your attention!

Backup slides

æ

Isotropic muons: efficiency map for leading muon track

Isotropic muons: Δ efficiency before and after stitching

Isotropic muons: generated muons $(sin(\theta_{YZ}))$

Isotropic muons: efficiency map for leading muon track $(sin(\theta_{YZ}))$

Isotropic muons: efficiency map after stitching $(sin(\theta_{YZ}))$

Efficiency vs. muon direction ($\theta_{XZ} = 0^{\circ}$)

- Each dot: 1000 μ^- with $P_{\mu^-} = 500 \text{ MeV}$ $\sigma_{\mu^-} = \sqrt{\varepsilon \cdot (1 - \varepsilon)/1000}$
- \bullet Track splitting decreased & higher efficiency for $\theta_{YZ} \rightarrow 45\,^\circ$