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Introduction: Continuous Integration (CI)
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●  Continuous integration is a software engineering 
practice in which changes in a software code are 
immediately tested and reported

●  The goal is to provide rapid feedback helping 
identifying defects introduced by code changes as 
soon as possible.

●  Issues detected early on in development are 
typically smaller, less complex and easier to 
resolve.

●  Each “commit” is verified by an automated
build procedure that tests the code and
allows teams to detect problems early,
hopefully before the code goes in production.
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● Bad habits in code development
can break your code...
…or someone else's code!

Introduction: why Continuous Integration
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●Sometime also good practice in code 
development can lead to some hidden bug...

Introduction: why Continuous Integration



Introduction: why Continuous Integration
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● The more code you write without testing, the more 
paths you have to check for errors.

● Keep on a straight path with proper code testing.
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The CI Project

● The aim of the CI Project is to improve the existing 
tools and extend the CI service to IF experiments;

● Continuous Integration practice is already used by:
– LArSoft-based experiments: 

μBooNE, DUNE, LArIAT and ArgoNeuT
– NOvA
– MINERvA
– GENIE
– GlideinWMS (under dev)

● The CI Project can help
to have healthy code
at all times.
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The CI Project provides

● Jenkins project associated to the CI build

● repository with general scripts to handle CI 
builds

● repository for the experiment CI configuration 
files

● CI web application to monitor code status

● DB to collect statistics (build time, memory 
usage, …), logs, plots, …
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● Developers commit new code 
implementing bug fix, new feature, …
– CI build job is triggered.

● Pull the code from the 
repository.

● Build the code.
● Run unit tests.
● Install the code.
● Run CI tests.

(depending on the experiment code these 
steps can be different)

– Report the status of the CI build.
– Notify developers in case of failure 

in the CI build caused by last 
commits.

CI build schema
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CI requirements from CI users

● A set of instructions to set up the CI workflow:
– setup the build environment
– checkout the code
– build the code
– run unit tests
– install the code
– run integration tests

(depending on the experiment code these steps can be 
different)

● Recommended storage:
– all (most of ) package dependencies should live on 

CVMFS (it is used to run the code on OSG sites)
– all data files required by the CI build job should live 

in dCache (reference files, input files, ... )
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CI system configuration

● The CI system it is vastly configurable
● The CI workflow configuration allows to define quite arbitrary 

CI phases (see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg)

● CI tests configuration allows to run tests using the experiment 
executable with required options/args or using a script that 
helps to set up the experiment executable call
(see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg)

● CI validation configuration allow to set up grid jobs to process 
an experiment workflow defining details for each stage
(see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid)

● For more details there is the “Talk to expert: CI 
support” session on tomorrow

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg
https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg
https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid
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CI test categories

● Regression test:
– runs existing tests against modified code;
– checks whether code changes break anything that 

worked prior to the change.
● Reproducibility test:

– make sure that running the code using the same 
input, will “always” generate the same output.

● Back-compatibility test:
– make sure that new code is able to access data files 

produced with a previous code release.
● Validation test:

– make sure that new code produces meaningful 
results.

● ...
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CI validation and grid support

● Validation tests usually require thousands of events
━ for this purpose the grid can help to get the job done

● The CI allows to build a specific version of the code 
(tag, branch, …) and uses it to run jobs on the grid

● Data produced by the CI validation are stored in a 
configurable dCache area for further analysis

━ also the code tarball and job logs are stored in dCache
● Provides stats about job usage resources
● Send an email report when the CI validation is 

complete and results are available
● Provide support to track jobs using POMS
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CI Web application for monitoring

Useful to monitor past and current CI build status
[http://lar-ci-history.fnal.gov/LarCI/app]

● shows the status of each stage of the CI workflow;
● shows also the status for individual CI tests using a tool-tip;
● the status of each CI stage and CI test is identified by a color code;
● each bullet in the matrix provides a link to the logs;
● the Web pulls information from the LArCI DB.

http://lar-ci-history.fnal.gov/LarCI/app
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CI Web application for monitoring

This page provides:
● Graphs that show resources usage
● stdout and stderr logs
● Backtrace log in case the test crashes
● Statistics like: memory peak (max RSS), 

%CPU,  elapsed time, …
● Each statistic is a link to the associated 

graph

CI tests details
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CI Web application for monitoring
CI validation

Progress bars show
the number of events
available for each stage

Experiment workflow stages

● The CI validation can process a 
workflow with as many stages as 
needed

● The stages can be grouped together 
in the same grid job to minimize I/O 
and improve grid job efficiency
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CI Web application for monitoring
CI validation

● By clicking on a stage box more info are available
● jobs stats which include: resident memory peak, elapsed time, file size
● job status details

jobs status details
for each stage

jobs stats plots
for each stage
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Continuous Integration highlights

● CI will help you to have a healthy code at all times
● CI workflow can handle code in git, svn and cvs  

repositories
● CI workflow can build and test a list of mutually 

dependent modules together
● user can test any desired branch/tag of the code
● user can run CI tests locally using her/his own just 

built code
● users can add/implement their own CI tests.
● Experiments will be the stakeholder
● References:

– the CI Project wiki

https://cdcvs.fnal.gov/redmine/projects/ci/wiki
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● LArSoft and NOvA CI builds are triggered by commits

● GENIE and MINERvA CI builds are triggered nightly 
by a crontab

● Disclaimer
– “warning” means that experiment code run fine, but some test 

on the output against a reference output is not successful
– “#failures” includes also failures due to infrastructure issues 

(dCache unavailable, …)
– In the case of LArSoft there are CI builds known to fail, 

experiment release managers need some time to update 
LArSoft version dependencies when a new LArSoft weekly tag 
is released

Stats from CI user builds

User OS #weeks #builds #builds/week #warning #failures

LArSoft SLF6/MacOS 14 744 54 49 36

NOvA SLF6 24 1035 43 48 59

GENIE SLF6/SLF7 11 330 30 0 0

MINERvA SLF6 7 63 7 0 4



6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop19

Are you interested in the CI service?

Experiments can require the CI service through SNOW:
Scientific Computing Services / Scientific Production Processing / 
Continuous Integration Service

● Tomorrow there is the “Talk to expert: CI Support” 
session

● Basic requirements for the experiment code:
– have a well defined and documented build chain;
– have all software dependencies available on CVMFS;
– have all needed accessory files (flux files, ...) on dCache.
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Summary and Future plans

● The CI Project Team is glad to provide the
CI service to IF experiments

● The CI practice has already been successfully 
adopted by LArSoft-based experiments and NOvA

● GENIE and  MINNERvA have been on-boarded 
since few months

● the plan is to on-board all IF experiments
– CI service will provide a software facility to constantly 

monitor the status of the experiment code
● will help to maintain a healthy code
● will help to monitor resource usage
● will help to monitor code performances

● New features are coming: memory profiling and more
● Feature requests from CI users are welcome!
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Thank you!
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Back up slides
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Work flow configuration example

“personality”
configuration using make

as build tool

default
configuration

cfg/workflow.cfg excerpt
[default]
workflow       = ${GENIE_WORKFLOW:-GENIE_ROOT6}
notify_email_to   = vito@fnal.gov,perdue@fnal.gov,yarba_j@fnal.gov
notify_succeeded_email_to =
notify_success = true
notify_warning_email_to =
notify_failed_email_to = 
notify_blame   = false
proxy_vo       = /fermilab/genie
build_db_uri=http://dbweb6.fnal.gov:8080/GenieCI/app

[GENIE_ROOT6]
experiment    = GENIE
qualifier     = "ROOT6+e10:${BUILDTYPE}"
personality   = make
ci_test_lists = quick_test_genie
revision      = ${GENIE_REVISION:-trunk}
proxy_flag    = false
skip_phases   = *@slf7
phases        = _evalROOT6_n checkout build unit_test ci_tests

[make]
# define what the stages do:
# _evalROOT6_n: setup the code environment
…

#checkout: instruction to checkout the code 
…

#build: instruction to build the code
…

# unit_test:instruction to run unit tests
…

#ci_tests: instruction to run the CI tests
…

● The “default configuration” selects the workflow to use
● The “workflow configuration” selects the CI phases to run in the CI build, the personality 

and the list of code modules (repositories) to process
● The “personality configuration” defines the CI phases using a particular build tool
● In the current implementation the GENIE CI workflow runs 5 CI phases: _eval_n, checkout, 

build, unit_test, ci_tests. The list of CI phases and their definition are arbitrary
● The CI phase is highly configurable, it can run an arbitrary sequence of commands

workflow configuration

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg
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CI test configuration example

CI test section

Define global
variablestest/ci_tests.cfg excerpt

[DEFAULT]
EXPSCRIPT_NOVASOFT=ci_regression_test_novasoft.sh
INPUTFILEDIR_NOVASOFT=/pnfs/nova/persistent/users/novapro/ci_tests_inputfiles
INPUTFILEDIR_XROOT_NOVASOFT=xroot://fndca1.fnal.gov:1094//pnfs//fnal.gov/usr/nova/persistent/users/novapro/ci_tests_inputfiles
CI_EXP_CODE=NOVASOFT
IDENTIFIER_NOVASOFT=${build_identifier}
PLATFORM_NOVASOFT=${build_platform}
TESTMASK_NOVASOFT=%(RUN_TEST_NOVASOFT)s%(CHECK_PRODUCTS_NOVASOFT)s%(CHECK_PRODUCT_SIZE_NOVASOFT)s
stdargs=%(mcargs)s  --input-file %(INPUT_FILE)s --reference-files %(REFERENCE_FILE)s

[test ci_raw2root_nd_t00_regression_test_novasoft]
script=%(EXPSCRIPT_NOVASOFT)s
STAGE_NAME=raw2root_nd_t00
NEVENTS=1
FHiCL_FILE=daq2rawdigitjob.fcl
BASE=neardet_r00011552_s00_t00
INPUT_FILE=%(BASE)s.raw
FETCH_INPUT=%(INPUTFILEDIR_LOCAL_NOVASOFT)s/%(STAGE_NAME)s/%(BASE)s.raw
REFERENCE_FILE=%(INPUTFILEDIR_XROOT_NOVASOFT)s/%(STAGE_NAME)s/%(BASE)s_%(ref)s.artdaq.root
OUTPUT_STREAM=out1:%(BASE)s_%(cur)s.artdaq.root
args=%(stdargs)s --input-files-to-fetch %(FETCH_INPUT)s

[suite default]
testlist=ci_raw2root_nd_t00_regression_test_novasoft ci_raw2root_nd_t02_regression_test_novasoft ci_raw2root_fd_t00_regression_test_novasoft 
ci_raw2root_fd_t02_regression_test_novasoft ci_fullchain_nd_data_regression_test_novasoft ci_fullchain_fd_data_regression_test_novasoft 
ci_calib_nd_regression_test_novasoft ci_calib_fd_regression_test_novasoft ci_mcgen_nd_regression_test_novasoft ci_mcgen_fdoverlay_regression_test_novasoft 
ci_mcgen_rock_regression_test_novasoft ci_mcgen_cry_regression_test_novasoft

● The “default section” initializes a set of global variables required to 
initialize the script that runs the CI tests.

● The “CI test section” sets specific configuration to run the CI test.
● The “CI test suite section” collects a list of tests to run all together.

CI test suite
section

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg


CI validation configuration example
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● The CI validation phase has its
  own configuration file
● It consists of two types
  of sections:

[<stage>] section
that specifies stage properties

[global] section that defines
the experiment workflow

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid
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CI Web application for monitoring

● In-line documentation:

link to wiki pages with description of the CI web application components
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CI Web application for monitoring

● CI Build details

● Hovering the mouse on the “Build” 
box you will get a tooltip that shows:

● Trigger reason (T:)
● Workflow (W:)
● Personality (P:)
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CI Web application for monitoring

● Checkout details

● Hovering the mouse on the “checkout” 
box you will get a tooltip that shows:

● repository name
● git description revision
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CI Web application for monitoring

● Hovering the mouse on the “unit_test” 
box you will get a tooltip that shows:

● Unit tests stats:
● total number;
● succeeded;
● failed;
● skipped.

● Unit test details
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CI Web application for monitoring

● Hovering the mouse on the “ci_test” 
box you will get a tooltip that shows:

● CI tests stats:
● total number;
● succeeded;
● warning;
● failed;
● Skipped.

● Summary of CI tests status.

● CI tests details
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CI Web application for monitoring

● CI tests view
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CI Web application for monitoring

This page provides:
●  Graphs that show resources usage
●  stdout and stderr logs
●  Backtrace log in case the test crashes
●  Statistics like: memory peak (max RSS), 

%CPU,  elapsed time, …
●  Each statistic is a link to the associated 

graph

● CI tests details
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CI Web application for monitoring

● Graph of RSS memory peak:
uboonecode g4 stage as an example
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CI validation view
●uBooNE calorimeter validation as an example

Experiment workflow stages

Progress bars show
the number of events
available for each stage

● The CI validation can process a workflow with as many stages as needed
● The stages can be grouped together in the same grid job to minimize I/O and 

improve grid job efficiency

Hovering the mouse
over the stages box
a tooltip shows
the status of that stage jobs
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