
Vito Di Benedetto for CI Project Team

FIFE Workshop
21st-22nd June 2017

CI: Testing and validation
of production software

Introduction: Continuous Integration (CI)

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop2

● Continuous integration is a software engineering
practice in which changes in a software code are
immediately tested and reported

● The goal is to provide rapid feedback helping
identifying defects introduced by code changes as
soon as possible.

● Issues detected early on in development are
typically smaller, less complex and easier to
resolve.

● Each “commit” is verified by an automated
build procedure that tests the code and
allows teams to detect problems early,
hopefully before the code goes in production.

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop3

● Bad habits in code development
can break your code...
…or someone else's code!

Introduction: why Continuous Integration

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop4

●Sometime also good practice in code
development can lead to some hidden bug...

Introduction: why Continuous Integration

Introduction: why Continuous Integration

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop5

● The more code you write without testing, the more
paths you have to check for errors.

● Keep on a straight path with proper code testing.

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop6

The CI Project

● The aim of the CI Project is to improve the existing
tools and extend the CI service to IF experiments;

● Continuous Integration practice is already used by:
– LArSoft-based experiments:

μBooNE, DUNE, LArIAT and ArgoNeuT
– NOvA
– MINERvA
– GENIE
– GlideinWMS (under dev)

● The CI Project can help
to have healthy code
at all times.

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop7

The CI Project provides

● Jenkins project associated to the CI build

● repository with general scripts to handle CI
builds

● repository for the experiment CI configuration
files

● CI web application to monitor code status

● DB to collect statistics (build time, memory
usage, …), logs, plots, …

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop8

● Developers commit new code
implementing bug fix, new feature, …
– CI build job is triggered.

● Pull the code from the
repository.

● Build the code.
● Run unit tests.
● Install the code.
● Run CI tests.

(depending on the experiment code these
steps can be different)

– Report the status of the CI build.
– Notify developers in case of failure

in the CI build caused by last
commits.

CI build schema

BuildBuild
& test& test
codecode

C
I

w
o

rk
fl

o
w

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop9

CI requirements from CI users

● A set of instructions to set up the CI workflow:
– setup the build environment
– checkout the code
– build the code
– run unit tests
– install the code
– run integration tests

(depending on the experiment code these steps can be
different)

● Recommended storage:
– all (most of) package dependencies should live on

CVMFS (it is used to run the code on OSG sites)
– all data files required by the CI build job should live

in dCache (reference files, input files, ...)

C
I

p
h

as
es

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop10

CI system configuration

● The CI system it is vastly configurable
● The CI workflow configuration allows to define quite arbitrary

CI phases (see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg)

● CI tests configuration allows to run tests using the experiment
executable with required options/args or using a script that
helps to set up the experiment executable call
(see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg)

● CI validation configuration allow to set up grid jobs to process
an experiment workflow defining details for each stage
(see https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid)

● For more details there is the “Talk to expert: CI
support” session on tomorrow

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg
https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg
https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop11

CI test categories

● Regression test:
– runs existing tests against modified code;
– checks whether code changes break anything that

worked prior to the change.
● Reproducibility test:

– make sure that running the code using the same
input, will “always” generate the same output.

● Back-compatibility test:
– make sure that new code is able to access data files

produced with a previous code release.
● Validation test:

– make sure that new code produces meaningful
results.

● ...

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop12

CI validation and grid support

● Validation tests usually require thousands of events
━ for this purpose the grid can help to get the job done

● The CI allows to build a specific version of the code
(tag, branch, …) and uses it to run jobs on the grid

● Data produced by the CI validation are stored in a
configurable dCache area for further analysis

━ also the code tarball and job logs are stored in dCache
● Provides stats about job usage resources
● Send an email report when the CI validation is

complete and results are available
● Provide support to track jobs using POMS

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop13

CI Web application for monitoring

Useful to monitor past and current CI build status
[http://lar-ci-history.fnal.gov/LarCI/app]

● shows the status of each stage of the CI workflow;
● shows also the status for individual CI tests using a tool-tip;
● the status of each CI stage and CI test is identified by a color code;
● each bullet in the matrix provides a link to the logs;
● the Web pulls information from the LArCI DB.

http://lar-ci-history.fnal.gov/LarCI/app

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop14

CI Web application for monitoring

This page provides:
● Graphs that show resources usage
● stdout and stderr logs
● Backtrace log in case the test crashes
● Statistics like: memory peak (max RSS),

%CPU, elapsed time, …
● Each statistic is a link to the associated

graph

CI tests details

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop15

CI Web application for monitoring
CI validation

Progress bars show
the number of events
available for each stage

Experiment workflow stages

● The CI validation can process a
workflow with as many stages as
needed

● The stages can be grouped together
in the same grid job to minimize I/O
and improve grid job efficiency

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop16

CI Web application for monitoring
CI validation

● By clicking on a stage box more info are available
● jobs stats which include: resident memory peak, elapsed time, file size
● job status details

jobs status details
for each stage

jobs stats plots
for each stage

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop17

Continuous Integration highlights

● CI will help you to have a healthy code at all times
● CI workflow can handle code in git, svn and cvs

repositories
● CI workflow can build and test a list of mutually

dependent modules together
● user can test any desired branch/tag of the code
● user can run CI tests locally using her/his own just

built code
● users can add/implement their own CI tests.
● Experiments will be the stakeholder
● References:

– the CI Project wiki

https://cdcvs.fnal.gov/redmine/projects/ci/wiki

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop18

● LArSoft and NOvA CI builds are triggered by commits

● GENIE and MINERvA CI builds are triggered nightly
by a crontab

● Disclaimer
– “warning” means that experiment code run fine, but some test

on the output against a reference output is not successful
– “#failures” includes also failures due to infrastructure issues

(dCache unavailable, …)
– In the case of LArSoft there are CI builds known to fail,

experiment release managers need some time to update
LArSoft version dependencies when a new LArSoft weekly tag
is released

Stats from CI user builds

User OS #weeks #builds #builds/week #warning #failures

LArSoft SLF6/MacOS 14 744 54 49 36

NOvA SLF6 24 1035 43 48 59

GENIE SLF6/SLF7 11 330 30 0 0

MINERvA SLF6 7 63 7 0 4

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop19

Are you interested in the CI service?

Experiments can require the CI service through SNOW:
Scientific Computing Services / Scientific Production Processing /
Continuous Integration Service

● Tomorrow there is the “Talk to expert: CI Support”
session

● Basic requirements for the experiment code:
– have a well defined and documented build chain;
– have all software dependencies available on CVMFS;
– have all needed accessory files (flux files, ...) on dCache.

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop20

Summary and Future plans

● The CI Project Team is glad to provide the
CI service to IF experiments

● The CI practice has already been successfully
adopted by LArSoft-based experiments and NOvA

● GENIE and MINNERvA have been on-boarded
since few months

● the plan is to on-board all IF experiments
– CI service will provide a software facility to constantly

monitor the status of the experiment code
● will help to maintain a healthy code
● will help to monitor resource usage
● will help to monitor code performances

● New features are coming: memory profiling and more
● Feature requests from CI users are welcome!

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop21

Thank you!

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop22

Back up slides

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop23

Work flow configuration example

“personality”
configuration using make

as build tool

default
configuration

cfg/workflow.cfg excerpt
[default]
workflow = ${GENIE_WORKFLOW:-GENIE_ROOT6}
notify_email_to = vito@fnal.gov,perdue@fnal.gov,yarba_j@fnal.gov
notify_succeeded_email_to =
notify_success = true
notify_warning_email_to =
notify_failed_email_to =
notify_blame = false
proxy_vo = /fermilab/genie
build_db_uri=http://dbweb6.fnal.gov:8080/GenieCI/app

[GENIE_ROOT6]
experiment = GENIE
qualifier = "ROOT6+e10:${BUILDTYPE}"
personality = make
ci_test_lists = quick_test_genie
revision = ${GENIE_REVISION:-trunk}
proxy_flag = false
skip_phases = *@slf7
phases = _evalROOT6_n checkout build unit_test ci_tests

[make]
define what the stages do:
_evalROOT6_n: setup the code environment
…

#checkout: instruction to checkout the code
…

#build: instruction to build the code
…

unit_test:instruction to run unit tests
…

#ci_tests: instruction to run the CI tests
…

● The “default configuration” selects the workflow to use
● The “workflow configuration” selects the CI phases to run in the CI build, the personality

and the list of code modules (repositories) to process
● The “personality configuration” defines the CI phases using a particular build tool
● In the current implementation the GENIE CI workflow runs 5 CI phases: _eval_n, checkout,

build, unit_test, ci_tests. The list of CI phases and their definition are arbitrary
● The CI phase is highly configurable, it can run an arbitrary sequence of commands

workflow configuration

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Workflowcfg

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop24

CI test configuration example

CI test section

Define global
variablestest/ci_tests.cfg excerpt

[DEFAULT]
EXPSCRIPT_NOVASOFT=ci_regression_test_novasoft.sh
INPUTFILEDIR_NOVASOFT=/pnfs/nova/persistent/users/novapro/ci_tests_inputfiles
INPUTFILEDIR_XROOT_NOVASOFT=xroot://fndca1.fnal.gov:1094//pnfs//fnal.gov/usr/nova/persistent/users/novapro/ci_tests_inputfiles
CI_EXP_CODE=NOVASOFT
IDENTIFIER_NOVASOFT=${build_identifier}
PLATFORM_NOVASOFT=${build_platform}
TESTMASK_NOVASOFT=%(RUN_TEST_NOVASOFT)s%(CHECK_PRODUCTS_NOVASOFT)s%(CHECK_PRODUCT_SIZE_NOVASOFT)s
stdargs=%(mcargs)s --input-file %(INPUT_FILE)s --reference-files %(REFERENCE_FILE)s

[test ci_raw2root_nd_t00_regression_test_novasoft]
script=%(EXPSCRIPT_NOVASOFT)s
STAGE_NAME=raw2root_nd_t00
NEVENTS=1
FHiCL_FILE=daq2rawdigitjob.fcl
BASE=neardet_r00011552_s00_t00
INPUT_FILE=%(BASE)s.raw
FETCH_INPUT=%(INPUTFILEDIR_LOCAL_NOVASOFT)s/%(STAGE_NAME)s/%(BASE)s.raw
REFERENCE_FILE=%(INPUTFILEDIR_XROOT_NOVASOFT)s/%(STAGE_NAME)s/%(BASE)s_%(ref)s.artdaq.root
OUTPUT_STREAM=out1:%(BASE)s_%(cur)s.artdaq.root
args=%(stdargs)s --input-files-to-fetch %(FETCH_INPUT)s

[suite default]
testlist=ci_raw2root_nd_t00_regression_test_novasoft ci_raw2root_nd_t02_regression_test_novasoft ci_raw2root_fd_t00_regression_test_novasoft
ci_raw2root_fd_t02_regression_test_novasoft ci_fullchain_nd_data_regression_test_novasoft ci_fullchain_fd_data_regression_test_novasoft
ci_calib_nd_regression_test_novasoft ci_calib_fd_regression_test_novasoft ci_mcgen_nd_regression_test_novasoft ci_mcgen_fdoverlay_regression_test_novasoft
ci_mcgen_rock_regression_test_novasoft ci_mcgen_cry_regression_test_novasoft

● The “default section” initializes a set of global variables required to
initialize the script that runs the CI tests.

● The “CI test section” sets specific configuration to run the CI test.
● The “CI test suite section” collects a list of tests to run all together.

CI test suite
section

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/Ci_testscfg

CI validation configuration example

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop25

● The CI validation phase has its
 own configuration file
● It consists of two types
 of sections:

[<stage>] section
that specifies stage properties

[global] section that defines
the experiment workflow

More details at https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

https://cdcvs.fnal.gov/redmine/projects/ci/wiki/CI_validation_test_using_the_grid

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop26

CI Web application for monitoring

● In-line documentation:

link to wiki pages with description of the CI web application components

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop27

CI Web application for monitoring

● CI Build details

● Hovering the mouse on the “Build”
box you will get a tooltip that shows:

● Trigger reason (T:)
● Workflow (W:)
● Personality (P:)

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop28

CI Web application for monitoring

● Checkout details

● Hovering the mouse on the “checkout”
box you will get a tooltip that shows:

● repository name
● git description revision

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop29

CI Web application for monitoring

● Hovering the mouse on the “unit_test”
box you will get a tooltip that shows:

● Unit tests stats:
● total number;
● succeeded;
● failed;
● skipped.

● Unit test details

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop30

CI Web application for monitoring

● Hovering the mouse on the “ci_test”
box you will get a tooltip that shows:

● CI tests stats:
● total number;
● succeeded;
● warning;
● failed;
● Skipped.

● Summary of CI tests status.

● CI tests details

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop31

CI Web application for monitoring

● CI tests view

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop32

CI Web application for monitoring

This page provides:
● Graphs that show resources usage
● stdout and stderr logs
● Backtrace log in case the test crashes
● Statistics like: memory peak (max RSS),

%CPU, elapsed time, …
● Each statistic is a link to the associated

graph

● CI tests details

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop33

CI Web application for monitoring

● Graph of RSS memory peak:
uboonecode g4 stage as an example

6/21/17 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop34

CI validation view
●uBooNE calorimeter validation as an example

Experiment workflow stages

Progress bars show
the number of events
available for each stage

● The CI validation can process a workflow with as many stages as needed
● The stages can be grouped together in the same grid job to minimize I/O and

improve grid job efficiency

Hovering the mouse
over the stages box
a tooltip shows
the status of that stage jobs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

