
Mike Kirby
FIFE Workshop
June 22, 2017

Grid submission tutorial



Head to the Open Science Grid???

2



Centralized Services from FIFE
•Submission to distributed computing – JobSub, GlideinWMS
frontend

•Processing Monitors, Alarms, and Automated Submission
•Data Handling and Distribution
–Sequential Access Via Metadata (SAM) File Transfer Service
– interface to dCache/Enstore/storage services
– Intensity Frontier Data Handling Client

•Software stack distribution – CERN Virtual Machine File 
System (CVMFS)
•User Authentication, Proxy generation, and security
•Electronic Logbooks, Databases, and Beam information
•Integration with future projects, e.g. HEPCloud

3 7/27/16Mike Kirby| Getting Experiments Computing in Tune



Centralized Services from FIFE
•Submission to distributed computing – JobSub, GlideinWMS
frontend

•Processing Monitors, Alarms, and Automated Submission
•Data Handling and Distribution
–Sequential Access Via Metadata (SAM) File Transfer Service
– interface to dCache/Enstore/storage services
– Intensity Frontier Data Handling Client

•Software stack distribution – CERN Virtual Machine File 
System (CVMFS)
•User Authentication, Proxy generation, and security
•Electronic Logbooks, Databases, and Beam information
•Integration with future projects, e.g. HEPCloud

4 7/27/16Mike Kirby| Getting Experiments Computing in Tune



Job Submission and management architecture
• Common infrastructure is the fifebatch system: one GlideInWMS pool, 2 

schedds, frontend, collectors, etc.
• Users interface with system via “jobsub”: middleware that provides a 

common tool across all experiments; shields user from intricacies of Condor
– Simple matter of a command-line option to steer jobs to different sites

• Common monitoring provided by FIFEMON tools
– Now also helps users to understand why jobs aren’t running

5

Jobsub	client Jobsub	server
Condor	schedds

FNAL	GPGrid

GlideinWMS	pool
GlideinWMS	frontend
Condor	negotiator

OSG	Sites

AWS/HEPCloud

Monitoring	
(FIFEMON)

User

7/27/16Mike Kirby| Getting Experiments Computing in Tune



Job Submission and management architecture
• Common infrastructure is the fifebatch system: one GlideInWMS pool, 2 

schedds, frontend, collectors, etc.
• Users interface with system via “jobsub”: middleware that provides a 

common tool across all experiments; shields user from intricacies of Condor
– Simple matter of a command-line option to steer jobs to different sites

• Common monitoring provided by FIFEMON tools
– Now also helps users to understand why jobs aren’t running

6

Jobsub	client Jobsub	server
Condor	schedds

FNAL	GPGrid

GlideinWMS	pool
GlideinWMS	frontend
Condor	negotiator

OSG	Sites

AWS/HEPCloud

Monitoring	
(FIFEMON)

User

7/27/16Mike Kirby| Getting Experiments Computing in Tune



Lets start with the basics

• What happens when you submit jobs 
to the grid?

• You are authenticated and authorized 
to submit – discussed later

• Submission goes into batch queue 
(HTCondor) and waits in line

• You (or your script) hand to jobsub an 
executable (script or binary)

• Jobs are matched to a worker node –
what does this mean?

• Server distributes your executable to 
the worker nodes

• Executable running on remote cluster 
and NOT as your user id – no home 
area, no NFS volume mounts, etc.

7

fifebatch/GPGrid

OSG



Basics of job submission

8

interactive node submission
server

Alice1
Alice2
Bob1

Alice3

Bob2

Bob4

Alice4
Chuck1

Bob3



Basics of job submission

9

interactive node
dunegpvmXX

fifebatch
servers

Alice1
Alice2
Bob1

Alice3

Bob2

Bob4

Alice4
Chuck1

Bob3

Alice1
Alice2
Bob1

Alice3

Bob2

Bob4

Alice4
Chuck1

Bob3



What do I need to know when I launch a script?

• What are the resources that my workflow needs?
–how many jobs to submit? how many concurrent?
–what allocation does my experiment have?

• What are the resources each job needs?
–remember that you're submitting to a worker node out on the 
Open Science Grid, it has limitations

–exceeding those limitations will cause your job to fail
• Where is the software that your workflow running coming 

from?
–is there code from your experiment?
–do you have custom compiled code?

• What data is required as an input to the workflow?
–how is the data going to get there?
–is the data readily available?

10



What resources does my workflow need?
• How many jobs to submit?

–if you have 1000 files to process, should you submit 1000 job 
sections? need to think about it!

–ideally jobs run for no less than 1 hour, but 2-8 hours should be 
target

–of course, need to balance input and output file size
• What is my experiment allocation? (some ground rules)

–shouldn't expect to submit 1,000,000 hours of processing in 
a week if you experiment only has an allocation of 100 slots 
(1M hours -> 6000 cores for a week)

–don't submit more than 5000 sections in one command
–don't submit more than 1 week of allocation at any one time

• Can the database handle NNN connections? Limit the 
number of concurrent jobs

11



What resources does each job need?
• What number of CPUs does the job need?

–are you running a multi-threaded job? don't do this 
accidentally!

• How much total memory does the job need? does it depend on 
the input? have I tested the input?

–profiling tools are available – valgrind, allinea, etc
–are has memory tracking modules as well

• How much scratch hard disk scratch space does the workflow 
use?

–staging input files from storage? writing output files before 
transferring back to storage?

• How much wall time for completion of each section? Note that 
wall time includes transferring input files, transferring output files, 
and connecting to remote resources (Databases, websites, etc.)

12



What software and libraries does my workflow need?

• The standard repository for accessing software and 
libraries is CVMFS (CERN Virtual Machine File System)

–mounted on all worker nodes
–mounted on all interactive nodes
–can be mounted on your laptop
–used for centralized distribution of packaged releases of 
experiment software – not your personal dev area

–not to be used for distribution of data or reference files
• locally built development code should be placed in a tarball

on dCache, transferred to the worker nodes through 
dropbox, and then unwound into the scratch area

• can test that your software is grid friendly using 
gpgtest.fnal.gov as a test node.

13



What data is required as an input for the workflow?

• data files should be transferred in from dCache
–BlueArc transfers are going away (and they are extremely 
inefficient)

–can utilize multiple transfer protocols to get data
–XRootD, gridftp, etc – large number of doors to dCache

• but need to think about volume of data being transferred
–how large is the dataset? number of files and volume
–tune the number of job sections in a cluster to match the 
timing of the workflow and the size of output file

–1 – 10 GB is a good target for output
• Is the data ready to be processed?

14



Where is the data actually located?

15



Make sure to prestage your data!

• on an interactive node

> source /cvmfs/fermilab.opensciencegrid.org/products/common/etc/setup
> setup sam_web_client
> setup kx509
> kx509
> samweb prestage-dataset –e <your_experiment_here> 
\--defname=<your_dataset_here>

• When that command completes, your data should be located on disk
• Will greatly improve your efficiency knowing that the data is located 

ONLINE and not waiting for tape access
• cat /pnfs/<exp>/data/<full_path>/".(get)(<file_name_here>)(locality)"

–ONLINE – staged to disk
–NEARLINE – copy stored on tape

16



What to know before you submit you jobs?

• Think about what resources your workflow will occupy 
while processing?

• is it equitable for importance of submission?
• will it overload any of the services?
• will the efficiency be as high as possible? 
• have you matched the resource needs with the resource 

request?
• have you made sure that all of the software needed is 

accessed via Grid-friendly tools?
• are you being a good steward of the resources being 

provided to you?

17



More complicated picture

18



• Extremely important 
to understand 
performance of 
system

• Critical for 
responding to 
downtimes and 
identifying 
inefficiencies

• Focused on 
improving the real 
time monitoring of 
distributed jobs, 
services, and user 
experience

• fifemon.fnal.gov

FIFE Monitoring of resource utilization

19 7/27/16Mike Kirby| Getting Experiments Computing in Tune



Detailed profiling of experiment operations

20

Allows	identification	for	inefficiencies,	potential	slow	downs,
or	blocking	conditions	in	workflows

7/27/16Mike Kirby| Getting Experiments Computing in Tune



User Batch Details Dashboard

21



Backup

22


