
Dispersion relation for

hadronic light-by-light scattering

Peter Stoffer
Physics Department, UC San Diego

in collaboration with G. Colangelo, M. Hoferichter, and M. Procura
JHEP 04 (2017) 161, [arXiv:1702.07347 [hep-ph]]

arXiv:1701.06554 [hep-ph] (to appear in PRL)
JHEP 09 (2015) 074, [arXiv:1506.01386 [hep-ph]]
JHEP 09 (2014) 091, [arXiv:1402.7081 [hep-ph]]

and with G. Colangelo, M. Hoferichter, B. Kubis, and M. Procura
Phys. Lett. B738 (2014) 6, [arXiv:1408.2517 [hep-ph]]

June 5, 2017

First Workshop of the Muon g − 2 Theory Initiative, St. Charles
1

https://arxiv.org/abs/1702.07347
http://arxiv.org/abs/1701.06554
http://arxiv.org/abs/1506.01386
http://arxiv.org/abs/1402.7081
https://arxiv.org/abs/1408.2517


Outline

1 Introduction

2 Lorentz structure of the HLbL tensor

3 Master formula for (g − 2)µ

4 Dispersive representation

5 Conclusion and outlook

2



Overview

1 Introduction

2 Lorentz structure of the HLbL tensor

3 Master formula for (g − 2)µ

4 Dispersive representation

5 Conclusion and outlook

3



1 Introduction

Hadronic light-by-light (HLbL) scattering

• up to now only model calculations

• uncertainty estimate based rather
on consensus than on a systematic
method

• with recent progress on vacuum
polarisation, HLbL starts to
dominate theory error
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1 Introduction

Model calculations of HLbL

with the photons might occur. According to quark-hadron duality, the (constituent) quark loop also models
the contribution to aµ from the exchanges and loops of heavier resonances, like π′, a′

0, f
′
0, p, n, . . . which have

not been included explicitly so far. It also “absorbs” the remaining cutoff dependences of the low-energy
effective models. This is even true for the modeling of the pion-exchange contribution within the large Nc

inspired approach (LMD+V), since not all QCD short-distance constraints in the 4-point function 〈V V V V 〉
are reproduced with those ansätze. Some estimates for the (dressed) constituent quark loop are given in
Table 12.

Table 12
Results for the (dressed) quark loops.

Model aµ(quarks) × 1011

Point coupling 62(3)

VMD [HKS, HK] [242,245] 9.7(11.1)

ENJL + bare heavy quark [BPP] [243] 21(3)

Bare c-quark only [PdRV] [294] 2.3

We observe again a large, very model-dependent effect of the dressing of the photons. HKS, HK [242,245]
used a simple VMD-dressing for the coupling of the photons to the constituent quarks as it happens for
instance in the ENJL model. On the other hand, BPP [243] employed the ENJL model up to some cutoff
µ and then added a bare quark loop with a constituent quark mass MQ = µ. The latter contribution
simulates the high-momentum component of the quark loop, which is non-negligible. The sum of these two
contributions is rather stable for µ = 0.7, 1, 2 and 4 GeV and gives the value quoted in Table 12. A value of
2 × 10−11 for the c-quark loop is included by BPP [243], but not by HKS [242,245].

Summary
The totals of all contributions to hadronic light-by-light scattering reported in the most recent estimations

are shown in Table 13. We have also included some “guesstimates” for the total value. Note that the number
aLbL;had

µ = (80 ± 40) × 10−11 written in the fourth column in Table 13 under the heading KN was actually
not given in Ref. [17], but represents estimates used mainly by the Marseille group before the appearance
of the paper by MV [257]. Furthermore, we have included in the sixth column the estimate aLbL;had

µ =
(110±40)×10−11 given recently in Refs. [298,41,43]. Note that PdRV [294] (seventh column) do not include
the dressed light quark loops as a separate contribution. They assume them to be already covered by using
the short-distance constraint from MV [257] on the pseudoscalar-pole contribution. PdRV add, however, a
small contribution from the bare c-quark loop.

Table 13
Summary of the most recent results for the various contributions to aLbL;had

µ × 1011. The last column is our estimate based on
our new evaluation for the pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/JN

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99±16

π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13

π, K loops + other subleading in Nc − − − 0±10 − − −
axial vectors 2.5±1.0 1.7±1.7 − 22± 5 − 15±10 22± 5

scalars −6.8±2.0 − − − − −7± 7 −7± 2

quark loops 21± 3 9.7±11.1 − − − 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 110±40 105±26 116±39

77
→ Jegerlehner, Nyffeler (2009)

• pseudoscalar pole contribution most important

• pion-loop second most important

• differences between models, large uncertainties
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1 Introduction

How to improve HLbL calculation?

• make use of fundamental principles:
• gauge invariance, crossing symmetry
• unitarity, analyticity

• relate HLbL to experimentally
accessible quantities
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2 Lorentz structure of the HLbL tensor

The HLbL tensor: definitions

• hadronic four-point function:

Πµνλσ(q1, q2, q3)

= −i
∫
dxdydze−i(q1·x+q2·y+q3·z)〈0|Tjµem(x)jνem(y)jλem(z)jσem(0)|0〉

• EM current:
jµem =

∑

i=u,d,s

Qiq̄iγ
µqi
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2 Lorentz structure of the HLbL tensor

The HLbL tensor: definitions

• helicity amplitudes for the process
γ∗(q1, λ1)γ∗(q2, λ2)→ γ∗(−q3, λ3)γ(q4, λ4):

Hλ1λ2λ3λ4 = ελ1µ ε
λ2
ν ε

λ3∗
λ ελ4∗σ Πµνλσ

• Mandelstam variables:
s = (q1 + q2)2, t = (q1 + q3)2, u = (q2 + q3)2

• for (g − 2)µ, the external photon is on shell:
q2

4 = 0, where q4 = q1 + q2 + q3
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2 Lorentz structure of the HLbL tensor

The HLbL tensor

• a priori 138 ‘naive’ Lorentz structures:

Πµνλσ = gµνgλσΠ1 + gµλgνσΠ2 + gµσgνλΠ3

+
∑

i,k,l,m

qµi q
ν
j q

λ
kq

σ
l Π4

ijkl

+
∑

i,j

gλσqµi q
ν
jΠ5

ij + . . .

• in 4 space-time dimensions: 2 linear relations among
the 138 Lorentz structures → Eichmann et al. (2014)

• six dynamical variables, e.g. two Mandelstam
variables s, t and the photon virtualities q2

1, q2
2, q2

3, q2
4
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2 Lorentz structure of the HLbL tensor

HLbL tensor: gauge invariance

• Ward identities

{qµ1 , qν2 , qλ3 , qσ4 }Πµνλσ = 0

imply 95 linear relations between scalar functions Πi

• off-shell basis: 138−95−2 = 41 structures

• corresponding to 41 helicity amplitudes

• relations between Πi imply kinematic zeros
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2 Lorentz structure of the HLbL tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition, following a
recipe by Bardeen, Tung (1968) and Tarrach (1975):

Πµνλσ(q1, q2, q3) =
54∑

i=1

T µνλσi Πi(s, t, u; q2
j )

• Lorentz structures manifestly gauge invariant

• crossing symmetry manifest: only 7 distinct
structures, 47 follow from crossing

• scalar functions Πi free of kinematic singularities
⇒ ideal quantities for a dispersive treatment
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3 Master formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

• from gauge invariance:

Πµνλρ = −qσ4
∂

∂qρ4
Πµνλσ

• for (g − 2)µ: afterwards take q4 → 0

• no kinematic singularities in scalar functions: perform
these steps with the derived Lorentz decomposition

• only 12 linear combinations of the scalar functions Πi

contribute to (g − 2)µ
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3 Master formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

aHLbL
µ = e6

∫
d4q1

(2π)4

d4q2

(2π)4

12∑
i=1

T̂i(q1, q2; p)Π̂i(q1, q2,−q1 − q2)

q2
1q

2
2(q1 + q2)2[(p+ q1)2 −m2

µ][(p− q2)2 −m2
µ]

• T̂i: known integration kernel functions

• five loop integrals can be performed with
Gegenbauer polynomial techniques
→ Knecht, Nyffeler (2002); Jegerlehner, Nyffeler (2009),

Bijnens, Zahiri-Abyaneh (2012); Bijnens, Relefors (2016)

• Wick rotation possible even in the presence of
anomalous thresholds
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3 Master formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

aHLbL
µ =

2α3

3π2

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ
√

1− τ 2Q3
1Q

3
2

×
12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

• Ti: known integration kernels

• Π̄i: linear combinations of the scalar functions Πi

• Euclidean momenta: Q2
i = −q2

i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2τ
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4 Dispersive representation

Analytic properties of scalar functions

• right- and left-hand cuts in each Mandelstam variable

• double-spectral regions (box topologies)

• anomalous thresholds for large photon virtualities
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4 Dispersive representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

• the limit q4 → 0 for (g − 2)µ is taken in the end
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4 Dispersive representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

future work: higher intermediate states

• the limit q4 → 0 for (g − 2)µ is taken in the end
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4 Dispersive representation Pion pole

Pion pole
→ talk by M. Hoferichter

Ππ0-pole
1 =

Fπ0γ∗γ∗(q
2
1, q

2
2)Fπ0γ∗γ(q

2
3, 0)

s−M2
π

Ππ0-pole
2,3 via crossing symmetry

• input: doubly-virtual and singly-virtual pion transition
form factors Fγ∗γ∗π0 and Fγ∗γπ0

• pion is on shell

• dispersive analysis of transition form factor:
→ Hoferichter et al., EPJC 74 (2014) 3180
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4 Dispersive representation Pion box

Box contributions

• simultaneous two-pion cuts in
two channels

• Mandelstam representation
explicitly constructed

Ππ-box
i =

1

π2

∫
ds′dt′

ρsti (s′, t′)
(s′ − s)(t′ − t) + (t↔ u) + (s↔ u)

• q2-dependence: pion vector form factors F V
π (q2

i ) for
each off-shell photon factor out

21



4 Dispersive representation Pion box

Box contributions

• sQED loop projected on BTT basis fulfils the same
Mandelstam representation

• only difference are factors of F V
π

• ⇒ box topologies are identical to FsQED:

≡ F V
π (q2

1)F V
π (q2

2)F V
π (q2

3)

×


 + +




• model-independent definition of pion loop
22



4 Dispersive representation Pion box

Box contributions

Very simple expressions for box contributions in terms
of Feynman parameter integrals

Ππ-box
i (q2

1, q
2
2, q

2
3) = F V

π (q2
1)F V

π (q2
2)F V

π (q2
3)

× 1

16π2

∫ 1

0

dx

∫ 1−x

0

dy Ii(x, y),

with e.g.

I7(x, y) = −4

3

(1− 2x)2(1− 2y)2y(1− y)

∆3
123

,

∆ijk = M2
π − xyq2

i − x(1− x− y)q2
j − y(1− x− y)q2

k.

23



4 Dispersive representation Pion box

Pion-box saturation with photon virtualities
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4 Dispersive representation Pion box

Box contributions

F V
π : fit of dispersive representation to time- and

space-like data
Result: aπ-box

µ = −15.9(2)× 10−11
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4 Dispersive representation ππ rescattering

Helicity formalism and sum rules

• construction of singly-on-shell basis: unphysical
helicity amplitudes drop out, 27 elements remain

• uniform asymptotic behaviour of the full tensor
together with BTT tensor decomposition leads to
15 HLbL sum rules

• sum rules derived for general (g − 2)µ outer
kinematics (not forward scattering → talk by I. Danilkin):

0 =

∫
ds′ImΠ̌i(s

′)
∣∣∣
t=q22 ,q

2
4=0

• can be expressed in terms of helicity amplitudes
26



4 Dispersive representation ππ rescattering

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

Πππi =
1

2

(
1

π

∫ ∞
4M2

π

dt′
ImΠππi (s, t′, u′)

t′ − t +
1

π

∫ ∞
4M2

π

du′
ImΠππi (s, t′, u′)

u′ − u

+ fixed-t

+ fixed-u
)

27



4 Dispersive representation ππ rescattering

Rescattering contribution

• unitarity gives imaginary parts in terms of helicity
amplitudes for γ∗γ(∗) → ππ

• basis change to helicity amplitudes calculated

• expansion into partial waves

• framework valid for arbitrary partial waves

• resummation of PW expansion reproduces full result:
checked for pion box

28



4 Dispersive representation ππ rescattering

Convergence of partial-wave expansion

Relative deviation from full result: 1− aπ-box, PW
µ,Jmax
aπ-box
µ

Jmax fixed-s fixed-t fixed-u average

0 100.0% −6.2% −6.2% 29.2%

2 26.1% −2.3% 7.3% 10.4%

4 10.8% −1.5% 3.6% 4.3%

6 5.7% −0.7% 2.1% 2.4%

8 3.5% −0.4% 1.3% 1.5%

10 2.3% −0.2% 0.9% 1.0%

12 1.7% −0.1% 0.7% 0.7%

14 1.3% −0.1% 0.5% 0.6%

16 1.0% −0.0% 0.4% 0.4%
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4 Dispersive representation ππ rescattering

The subprocess

Helicity amplitudes for γ∗γ∗ → ππ: dispersive solution
of the S-wave unitarity relation with Omnès methods

• pion-pole approximation to left-hand cut
⇒ q2-dependence again given by F V

π

• phase shifts based on modified inverse-amplitude
method

• low-energy properties accurately reproduced,
including f0(500) parameters

• fully consistent with π± polarisabilities

• result for S-waves: aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11
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4 Dispersive representation ππ rescattering

Topologies in the rescattering contribution

Omnès solution for γ∗γ∗ → ππ provides the following:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

Two-pion contributions to HLbL:

= + + +

︸ ︷︷ ︸ ︸ ︷︷ ︸
pion box rescattering contribution
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5 Conclusion and outlook

Results for two-pion contributions

Pion-box contribution:

aπ-box
µ = −15.9(2)× 10−11

S-wave rescattering contribution:

aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11

33



5 Conclusion and outlook

Summary

• our dispersive approach to HLbL scattering is based
on fundamental principles:
• gauge invariance, crossing symmetry
• unitarity, analyticity

• we take into account the lowest intermediate states:
π0-pole and ππ-cuts

• relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

• precise numerical evaluation of two-pion contributions

• a step towards a model-independent calculation of aµ
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5 Conclusion and outlook

Outlook

• higher pseudoscalar poles can be directly included
→ talk by B. Kubis

• two-particle intermediate states:
• include kaons in a coupled-channel system
• numerics for D-waves
• generalisation to heavier left-hand cuts

• higher intermediate states in direct channel
• framework needs to be extended
• e.g. 3π ⇒ axials

• match the total to OPE/pQCD constraints
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6 Backup

HLbL tensor: BTT Lorentz decomposition

Problem: find a decomposition

Πµνλσ(q1, q2, q3) =
∑

i

T µνλσi Πi(s, t, u; q2
j )

with the following properties:

• Lorentz structures T µνλσi manifestly gauge invariant:

{qµ1 , qν2 , qλ3 , qσ4 }T iµνλσ = 0

• scalar functions Πi free of kinematic singularities and
zeros
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6 Backup

HLbL tensor: BTT Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

• construct gauge projectors:

Iµν12 = gµν − qµ2 q
ν
1

q1 · q2

, Iλσ34 = gλσ − qλ4 q
σ
3

q3 · q4

• gauge invariant themselves, e.g.

qµ1 I
12
µν = 0

• leave HLbL tensor invariant, e.g.

Iµµ
′

12 Πµ′νλσ = Πµ
νλσ
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6 Backup

HLbL tensor: BTT Lorentz decomposition

Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures:
95 immediately project to 0

• remove 1/q1 · q2 and 1/q3 · q4 poles by taking
appropriate linear combinations

• BT basis: degenerate in the limits
q1 · q2 → 0, q3 · q4 → 0

39



6 Backup

HLbL tensor: BTT Lorentz decomposition

According to Tarrach (1975):

• degeneracies in the limits q1 · q2 → 0, q3 · q4 → 0:

∑

k

cikT
µνλσ
k = q1 · q2X

µνλσ
i + q3 · q4Y

µνλσ
i

• extend basis by additional structures Xµνλσ
i , Y µνλσ

i

taking care of remaining kinematic singularities

• equivalent: implementing crossing symmetry
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6 Backup

(g − 2)µ integration region in polar coordinates

Q2
3 = 0

Q
22 =

0Q
2 1
=

0

r = 0

r = 1

φ = π

φ = 5π
3

φ = π
3

τ = 1

τ = −1
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6 Backup

A roadmap for HLbL

e+e− → e+e−π0 γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω,φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor
Fπ0γ∗γ∗

(
q2
1, q2

2

) Partial waves for
γ∗γ∗ → ππ e+e− → e+e−ππ

Pion vector
form factor F π

V

Pion vector
form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω,φ → 3π ω,φ → π0γ∗ω,φ → π0γ∗

→ flowchart by M. Hoferichter
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