Dispersion relation for

 hadronic light-by-light scattering

 hadronic light-by-light scattering}

Peter Stoffer

Physics Department, UC San Diego
in collaboration with G. Colangelo, M. Hoferichter, and M. Procura

```
    JHEP 04 (2017) 161, [arXiv:1702.07347 [hep-ph]]
        arXiv:1701.06554 [hep-ph] (to appear in PRL)
    JHEP 09 (2015) 074, [arXiv:1506.01386 [hep-ph]]
    JHEP }09\mathrm{ (2014) 091, [arXiv:1402.7081 [hep-ph]]
and with G. Colangelo, M. Hoferichter, B. Kubis, and M. Procura Phys. Lett. B738 (2014) 6, [arXiv:1408.2517 [hep-ph]]
```


June 5, 2017

First Workshop of the Muon $g-2$ Theory Initiative, St. Charles

Outline

(1) Introduction
(2) Lorentz structure of the HLbL tensor
(3) Master formula for $(g-2)_{\mu}$
(4) Dispersive representation
(5) Conclusion and outlook

Overview

(1) Introduction

(2) Lorentz structure of the HLbL tensor
(3) Master formula for $(g-2)_{\mu}$
(4) Dispersive representation
(5) Conclusion and outlook

Hadronic light-by-light (HLbL) scattering

- up to now only model calculations
- uncertainty estimate based rather on consensus than on a systematic method
- with recent progress on vacuum polarisation, HLbL starts to dominate theory error

Model calculations of HLbL

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops + other subleading in N_{c}	-	-	-	0 ± 10	-	-	-
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39
				\rightarrow Jegerlehner, Nyffeler (2009)			

- pseudoscalar pole contribution most important
- pion-loop second most important
- differences between models, large uncertainties

How to improve HLbL calculation?

- make use of fundamental principles:
- gauge invariance, crossing symmetry
- unitarity, analyticity
- relate HLbL to experimentally accessible quantities

Overview

(1) Introduction

(2) Lorentz structure of the HLbL tensor
(3) Master formula for $(g-2)_{\mu}$
4) Dispersive representation
(5) Conclusion and outlook

The HLbL tensor: definitions

- hadronic four-point function:
$\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)$
$=-i \int d x d y d z e^{-i\left(q_{1} \cdot x+q_{2} \cdot y+q_{3} \cdot z\right)}\langle 0| T j_{\mathrm{em}}^{\mu}(x) j_{\mathrm{em}}^{\nu}(y) j_{\mathrm{em}}^{\lambda}(z) j_{\mathrm{em}}^{\sigma}(0)|0\rangle$
- EM current:

$$
j_{\mathrm{em}}^{\mu}=\sum_{i=u, d, s} Q_{i} \bar{q}_{i} \gamma^{\mu} q_{i}
$$

The HLbL tensor: definitions

- helicity amplitudes for the process

$$
\begin{aligned}
& \gamma^{*}\left(q_{1}, \lambda_{1}\right) \gamma^{*}\left(q_{2}, \lambda_{2}\right) \rightarrow \gamma^{*}\left(-q_{3}, \lambda_{3}\right) \gamma\left(q_{4}, \lambda_{4}\right): \\
& H_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}=\epsilon_{\mu}^{\lambda_{1}} \epsilon_{\nu}^{\lambda_{2}} \epsilon_{\lambda}^{\lambda_{3} *} \epsilon_{\sigma}^{\lambda_{4} *} \Pi^{\mu \nu \lambda \sigma}
\end{aligned}
$$

- Mandelstam variables:

$$
s=\left(q_{1}+q_{2}\right)^{2}, t=\left(q_{1}+q_{3}\right)^{2}, u=\left(q_{2}+q_{3}\right)^{2}
$$

- for $(g-2)_{\mu}$, the external photon is on shell:
$q_{4}^{2}=0$, where $q_{4}=q_{1}+q_{2}+q_{3}$

The HLbL tensor

- a priori 138 'naive’ Lorentz structures:

$$
\begin{aligned}
\Pi^{\mu \nu \lambda \sigma}= & g^{\mu \nu} g^{\lambda \sigma} \Pi^{1}+g^{\mu \lambda} g^{\nu \sigma} \Pi^{2}+g^{\mu \sigma} g^{\nu \lambda} \Pi^{3} \\
& +\sum_{i, k, l, m} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\sigma} \Pi_{i j k l}^{4} \\
& +\sum_{i, j} g^{\lambda \sigma} q_{i}^{\mu} q_{j}^{\nu} \Pi_{i j}^{5}+\ldots
\end{aligned}
$$

- in 4 space-time dimensions: 2 linear relations among the 138 Lorentz structures \rightarrow Eichmann et al. (2014)
- six dynamical variables, e.g. two Mandelstam variables s, t and the photon virtualities $q_{1}^{2}, q_{2}^{2}, q_{3}^{2}, q_{4}^{2}$

HLbL tensor: gauge invariance

- Ward identities

$$
\left\{q_{1}^{\mu}, q_{2}^{\nu}, q_{3}^{\lambda}, q_{4}^{\sigma}\right\} \Pi_{\mu \nu \lambda \sigma}=0
$$

imply 95 linear relations between scalar functions Π_{i}

- off-shell basis: $138-95-2=41$ structures
- corresponding to 41 helicity amplitudes
- relations between Π_{i} imply kinematic zeros

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition, following a recipe by Bardeen, Tung (1968) and Tarrach (1975):

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}\left(s, t, u ; q_{j}^{2}\right)
$$

- Lorentz structures manifestly gauge invariant
- crossing symmetry manifest: only 7 distinct structures, 47 follow from crossing
- scalar functions Π_{i} free of kinematic singularities \Rightarrow ideal quantities for a dispersive treatment

Overview

(1) Introduction

(2) Lorentz structure of the HLbL tensor

(3) Master formula for $(g-2)_{\mu}$
4) Dispersive representation
(5) Conclusion and outlook

Master formula: contribution to $(g-2)_{\mu}$

- from gauge invariance:

$$
\Pi_{\mu \nu \lambda \rho}=-q_{4}^{\sigma} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu \nu \lambda \sigma}
$$

- for $(g-2)_{\mu}$: afterwards take $q_{4} \rightarrow 0$
- no kinematic singularities in scalar functions: perform these steps with the derived Lorentz decomposition
- only 12 linear combinations of the scalar functions Π_{i} contribute to $(g-2)_{\mu}$

Master formula: contribution to $(g-2)_{\mu}$

$$
a_{\mu}^{\mathrm{HLbL}}=e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right]\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}
$$

- \hat{T}_{i} : known integration kernel functions
- five loop integrals can be performed with

Gegenbauer polynomial techniques
\rightarrow Knecht, Nyffeler (2002); Jegerlehner, Nyffeler (2009), Bijnens, Zahiri-Abyaneh (2012); Bijnens, Relefors (2016)

- Wick rotation possible even in the presence of anomalous thresholds

Master formula: contribution to $(g-2)_{\mu}$

$$
\begin{array}{r}
a_{\mu}^{\mathrm{HLbL}}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \\
\end{array}
$$

- T_{i} : known integration kernels
- $\bar{\Pi}_{i}$: linear combinations of the scalar functions Π_{i}
- Euclidean momenta: $Q_{i}^{2}=-q_{i}^{2}$
- $Q_{3}^{2}=Q_{1}^{2}+Q_{2}^{2}+2 Q_{1} Q_{2} \tau$

Overview

(1) Introduction

(2) Lorentz structure of the HLbL tensor
(3) Master formula for $(g-2)_{\mu}$
(4) Dispersive representation

Pion pole
Pion box
$\pi \pi$ rescattering
(5) Conclusion and outlook

Analytic properties of scalar functions

- right- and left-hand cuts in each Mandelstam variable
- double-spectral regions (box topologies)
- anomalous thresholds for large photon virtualities

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{-} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

one-pion intermediate state:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{0-\text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

two-pion intermediate state in both channels:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{0-\text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

two-pion intermediate state in first channel:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

future work: higher intermediate states

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\Pi_{\mu \nu \lambda \sigma}^{\pi \pi}+\ldots
$$

- the limit $q_{4} \rightarrow 0$ for $(g-2)_{\mu}$ is taken in the end

Pion pole

\rightarrow talk by M. Hoferichter

$$
\Pi_{1}^{\pi^{0} \text {-pole }}=\frac{\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma}\left(q_{3}^{2}, 0\right)}{s-M_{\pi}^{2}}
$$

$$
\Pi_{2,3}^{\pi^{0} \text {-pole }} \text { via crossing symmetry }
$$

- input: doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^{*} \gamma^{*} \pi^{0}}$ and $\mathcal{F}_{\gamma^{*} \gamma \pi^{0}}$
- pion is on shell
- dispersive analysis of transition form factor:
\rightarrow Hoferichter et al., EPJC 74 (2014) 3180

Box contributions

$$
\Pi_{i}^{\pi-\mathrm{box}}=\frac{1}{\pi^{2}} \int d s^{\prime} d t^{\prime} \frac{\rho_{i}^{s t}\left(s^{\prime}, t^{\prime}\right)}{\left(s^{\prime}-s\right)\left(t^{\prime}-t\right)}+(t \leftrightarrow u)+(s \leftrightarrow u)
$$

- q^{2}-dependence: pion vector form factors $F_{\pi}^{V}\left(q_{i}^{2}\right)$ for each off-shell photon factor out

Box contributions

- sQED loop projected on BTT basis fulfils the same Mandelstam representation
- only difference are factors of F_{π}^{V}
- \Rightarrow box topologies are identical to FsQED:

- model-independent definition of pion loop

Box contributions

Very simple expressions for box contributions in terms of Feynman parameter integrals

$$
\begin{aligned}
\Pi_{i}^{\pi-\operatorname{box}}\left(q_{1}^{2}, q_{2}^{2}, q_{3}^{2}\right)= & F_{\pi}^{V}\left(q_{1}^{2}\right) F_{\pi}^{V}\left(q_{2}^{2}\right) F_{\pi}^{V}\left(q_{3}^{2}\right) \\
& \times \frac{1}{16 \pi^{2}} \int_{0}^{1} d x \int_{0}^{1-x} d y I_{i}(x, y)
\end{aligned}
$$

with e.g.

$$
\begin{aligned}
I_{7}(x, y) & =-\frac{4}{3} \frac{(1-2 x)^{2}(1-2 y)^{2} y(1-y)}{\Delta_{123}^{3}} \\
\Delta_{i j k} & =M_{\pi}^{2}-x y q_{i}^{2}-x(1-x-y) q_{j}^{2}-y(1-x-y) q_{k}^{2}
\end{aligned}
$$

Pion-box saturation with photon virtualities

Box contributions

F_{π}^{V} : fit of dispersive representation to time- and space-like data
Result: $a_{\mu}^{\pi-\text {-box }}=-15.9(2) \times 10^{-11}$

Helicity formalism and sum rules

- construction of singly-on-shell basis: unphysical helicity amplitudes drop out, 27 elements remain
- uniform asymptotic behaviour of the full tensor together with BTT tensor decomposition leads to 15 HLbL sum rules
- sum rules derived for general $(g-2)_{\mu}$ outer kinematics (not forward scattering \rightarrow talk by I. Danikin):

$$
0=\left.\int d s^{\prime} \operatorname{Im} \check{\Pi}_{i}\left(s^{\prime}\right)\right|_{t=q_{2}^{2}, q_{4}^{2}=0}
$$

- can be expressed in terms of helicity amplitudes

Rescattering contribution

- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel:

$$
\begin{aligned}
\Pi_{i}^{\pi \pi}=\frac{1}{2} & \left(\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d t^{\prime} \frac{\operatorname{Im} \Pi_{i}^{\pi \pi}\left(s, t^{\prime}, u^{\prime}\right)}{t^{\prime}-t}+\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d u^{\prime} \frac{\operatorname{Im} \Pi_{i}^{\pi \pi}\left(s, t^{\prime}, u^{\prime}\right)}{u^{\prime}-u}\right. \\
& + \text { fixed- } t \\
& + \text { fixed- } u)
\end{aligned}
$$

Rescattering contribution

- unitarity gives imaginary parts in terms of helicity amplitudes for $\gamma^{*} \gamma^{(*)} \rightarrow \pi \pi$
- basis change to helicity amplitudes calculated
- expansion into partial waves
- framework valid for arbitrary partial waves
- resummation of PW expansion reproduces full result: checked for pion box

Convergence of partial-wave expansion

$J_{\max }$	fixed- s	fixed- t	fixed- u	average
0	100.0%	-6.2%	-6.2%	29.2%
2	26.1%	-2.3%	7.3%	10.4%
4	10.8%	-1.5%	3.6%	4.3%
6	5.7%	-0.7%	2.1%	2.4%
8	3.5%	-0.4%	1.3%	1.5%
10	2.3%	-0.2%	0.9%	1.0%
12	1.7%	-0.1%	0.7%	0.7%
14	1.3%	-0.1%	0.5%	0.6%
16	1.0%	-0.0%	0.4%	0.4%

The subprocess

Helicity amplitudes for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$: dispersive solution of the S-wave unitarity relation with Omnès methods

- pion-pole approximation to left-hand cut $\Rightarrow q^{2}$-dependence again given by F_{π}^{V}
- phase shifts based on modified inverse-amplitude method
- low-energy properties accurately reproduced, including $f_{0}(500)$ parameters
- fully consistent with $\pi^{ \pm}$polarisabilities
- result for S-waves: $a_{\mu, J=0}^{\pi \pi, \pi \text {-pole LHC }}=-8(1) \times 10^{-11}$

Topologies in the rescattering contribution

Omnès solution for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$ provides the following:

Two-pion contributions to HLbL:

Overview

(1) Introduction

(2) Lorentz structure of the HLbL tensor

(3) Master formula for $(g-2)_{\mu}$

4 Dispersive representation
(5) Conclusion and outlook

Results for two-pion contributions

Pion-box contribution:

$$
a_{\mu}^{\pi-\mathrm{box}}=-15.9(2) \times 10^{-11}
$$

S-wave rescattering contribution:

$$
a_{\mu, J=0}^{\pi \pi, \pi \text {-pole LHC }}=-8(1) \times 10^{-11}
$$

Summary

- our dispersive approach to HLbL scattering is based on fundamental principles:
- gauge invariance, crossing symmetry
- unitarity, analyticity
- we take into account the lowest intermediate states:
π^{0}-pole and $\pi \pi$-cuts
- relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- precise numerical evaluation of two-pion contributions
- a step towards a model-independent calculation of a_{μ}

Outlook

- higher pseudoscalar poles can be directly included
\rightarrow talk by B. Kubis
- two-particle intermediate states:
- include kaons in a coupled-channel system
- numerics for D-waves
- generalisation to heavier left-hand cuts
- higher intermediate states in direct channel
- framework needs to be extended
- e.g. $3 \pi \Rightarrow$ axials
- match the total to OPE/pQCD constraints

Backup

(6) Backup

HLbL tensor: BTT Lorentz decomposition

Problem: find a decomposition

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}\left(s, t, u ; q_{j}^{2}\right)
$$

with the following properties:

- Lorentz structures $T_{i}^{\mu \nu \lambda \sigma}$ manifestly gauge invariant:

$$
\left\{q_{1}^{\mu}, q_{2}^{\nu}, q_{3}^{\lambda}, q_{4}^{\sigma}\right\} T_{\mu \nu \lambda \sigma}^{i}=0
$$

- scalar functions Π_{i} free of kinematic singularities and zeros

(6) Backup

HLbL tensor: BTT Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

- construct gauge projectors:

$$
I_{12}^{\mu \nu}=g^{\mu \nu}-\frac{q_{2}^{\mu} q_{1}^{\nu}}{q_{1} \cdot q_{2}}, \quad I_{34}^{\lambda \sigma}=g^{\lambda \sigma}-\frac{q_{4}^{\lambda} q_{3}^{\sigma}}{q_{3} \cdot q_{4}}
$$

- gauge invariant themselves, e.g.

$$
q_{1}^{\mu} I_{\mu \nu}^{12}=0
$$

- leave HLbL tensor invariant, e.g.

$$
I_{12}^{\mu \mu^{\prime}} \Pi_{\mu^{\prime} \nu \lambda \sigma}=\Pi^{\mu}{ }_{\nu \lambda \sigma}
$$

HLbL tensor: BTT Lorentz decomposition
Following Bardeen, Tung (1968):

- apply gauge projectors to the 138 initial structures: 95 immediately project to 0
- remove $1 / q_{1} \cdot q_{2}$ and $1 / q_{3} \cdot q_{4}$ poles by taking appropriate linear combinations
- BT basis: degenerate in the limits

$$
q_{1} \cdot q_{2} \rightarrow 0, q_{3} \cdot q_{4} \rightarrow 0
$$

(6) Backup

HLbL tensor: BTT Lorentz decomposition
According to Tarrach (1975):

- degeneracies in the limits $q_{1} \cdot q_{2} \rightarrow 0, q_{3} \cdot q_{4} \rightarrow 0$:

$$
\sum_{k} c_{k}^{i} T_{k}^{\mu \nu \lambda \sigma}=q_{1} \cdot q_{2} X_{i}^{\mu \nu \lambda \sigma}+q_{3} \cdot q_{4} Y_{i}^{\mu \nu \lambda \sigma}
$$

- extend basis by additional structures $X_{i}^{\mu \nu \lambda \sigma}, Y_{i}^{\mu \nu \lambda \sigma}$ taking care of remaining kinematic singularities
- equivalent: implementing crossing symmetry

(6) Backup

$(g-2)_{\mu}$ integration region in polar coordinates

(6) Backup

A roadmap for HLbL

