Lessons for
HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

Why do we do this?

LUND

University
Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a1-exchange
Others

Summary

Hadronic contributions

- The blobs are hadronic contributions
- There are higher order contributions of both types (with photons outside the blobs)
- Extra photons inside the blobs more tricky (not needed at the moment for HLbL)

LUND
University
Lessons for
HLbL from model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange

To ChPT or not to ChPT

- ChPT = Effective field theory describing the lowest order pseudo-scalar representation
- or the (pseudo) Goldstone bosons from spontaneous breaking of chiral symmetry.
- Describes pions, kaons and etas at low-energies
- It's an effective field theory: new parameters or LECs at each new order
- Recent review of LECs:

JB, Ecker,Ann.Rev.Nucl.Part.Sci. 64 (2014) 149 [arXiv:1405.6488]

- a_{μ} is a very low-energy quantity, why not just calculate it in ChPT?

LUND
UNIVERSITY

Lessons for
HLbL from model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props

To ChPT or not to ChPT

HVP

HLbL

- Fill the blobs with pions and kaons
- Lowest order for both HVP and HLbL: pure pion loop (or scalar QED): well defined answer
- NLO: the blob is nicely finite but not after the muon/photon integrations
- Needs a counterterm (NLO LEC) that is the muon $g-2$

Lessons for
HLbL from
model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange

To ChPT or not to ChPT

- So need more than ChPT
- Experiment
- Dispersion relations
- lattice QCD
- Models: this talk
- ChPT can be used to put constraints, help understanding results and estimate not evaluated parts,...

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a1-exchange
Others
Summary

Why models?

- Pro:
- Can calculate with them (important in the past)
- Can use them to understand features of better/more exact calculations
- Can use them to estimate contributions from regions the other methods do not include
- Can use them together with better methods to produce better models
- Con:
- They are not the underlying theory or reality (experiment)
- hard to estimate errors (guesstimates)
- Beware: just model quark is different from QCD quark
- Beware: model pion might not be quite the real pion
- Reminder:
- HVP: high precision needed
- HLbL: "just a bit" better than at present, but need to make sure the error estimate is not way off

Lessons for
HLbL from model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange

Requirements

Requirements for models:
 Do as well you can

- Constrain as much as possible from experiment
- measured states
- measured form-factors
- mesaured relevant scattering processes
- Constrain as much as possible from theory
- include QCD short-distance constraints
- include long distance constraints from ChPT
- Use common sense
- Vary model parameters
- Is your model general enough to describe what you want to describe
- Different regions treated differently: is there some consistency
- As well as you can should improve with time

UNIVERSITY

Lessons for
HLbL from model
calculations
Johan Bijnens

Introduction
To ChPT or not to ChPT
Why models?
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop

HLbL: the main object to calculate

LundUNIVERSITY
Lessons forHLbL from

General properties

$\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right):$

- In general 138 Lorentz structures (but only 28 contribute to $g-2$)
- Using $q_{\rho} \Pi^{\rho \nu \alpha \beta}=p_{1 \nu} \Pi^{\rho \nu \alpha \beta}=p_{2 \alpha} \Pi^{\rho \nu \alpha \beta}=p_{3 \beta} \Pi^{\rho \nu \alpha \beta}=0$ 43 gauge invariant structures
- Bose symmetry relates some of them
- All depend on p_{1}^{2}, p_{2}^{2} and q^{2}, but before derivative and $p_{3} \rightarrow 0$ also $p_{3}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{3}$
- Actually 2 less but singular basis Fischer et al.
- Choice of basis not unique (some more convenient than others, but not always the same)
- Compare HVP: one function, one variable
- Calculation from experiment: difficult: Stoffer
- In four photon measurement: lepton contribution

Lessons for HLbL from model
calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange

General properties

$\int \frac{\mathrm{d}^{4} p_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} p_{2}}{(2 \pi)^{4}} \quad$ plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{\mu}, p_{2} \cdot p_{\mu}$
- Rotate to Euclidean space:
- Easier separation of long and short-distance
- Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler,
Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_{1}^{2}, P_{2}^{2} and Q^{2} remain
- study $a_{\mu}^{\mathrm{X}}=\int d l_{P_{1}} d l_{P_{2}} a_{\mu}^{\mathrm{XLL}}=\int d l_{P_{1}} d l_{P_{2}} d l_{Q} a_{\mu}^{\mathrm{XLLQ}}$ $I_{P}=\ln (P / \mathrm{GeV})$, to see where the contributions are
- Study the dependence on the cut-off for the photons

LUND
UNiversity
Lessons for HLbL from model
calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

General properties

$\int \frac{\mathrm{d}^{4} p_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} p_{2}}{(2 \pi)^{4}} \quad$ plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{\mu}, p_{2} \cdot p_{\mu}$
- Rotate to Euclidean space:
- Easier separation of long and short-distance
- Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler,
Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_{1}^{2}, P_{2}^{2} and Q^{2} remain
- study $a_{\mu}^{\mathrm{X}}=\int d l_{P_{1}} d l_{P_{2}} a_{\mu}^{\mathrm{XLL}}=\int d l_{P_{1}} d l_{P_{2}} d l_{Q} a_{\mu}^{\mathrm{XLLQ}}$ $I_{P}=\ln (P / \mathrm{GeV})$, to see where the contributions are
- Study the dependence on the cut-off for the photons

Lessons for
HLbL from model
calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a1-exchange
Others
Summary

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. B322 (1994) 239-246. [hep-ph/9311316].

- Use ChPT p counting and large N_{c}
- p^{4}, order 1: pion-loop
- p^{8}, order N_{c} : quark-loop and heavier meson exchanges
- p^{6}, order N_{c} : pion exchange

Does not fully solve the problem only short-distance part of quark-loop is really p^{8} but it's a start

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD,"

Phys. Lett. B322 (1994) 239-246. [hep-ph/9311316].

- Use ChPT p counting and large N_{c}
- p^{4}, order 1: pion-loop
- p^{8}, order N_{c} : quark-loop and heavier meson exchanges
- p^{6}, order N_{c} : pion exchange

Implemented by two groups in the 1990s:

- Hayakawa, Kinoshita, Sanda: meson models, pion loop using hidden local symmetry, quark-loop with VMD, calculation in Minkowski space (HKS)
- JB, Pallante, Prades: Try using as much as possible a consistent model-approach, ENJL, calculation in Euclidean space (BPP)

LUND

UNIVERSITY
Lessons for HLbL from model
calculations
Johan Bijnens

Introduction

General props
First real
estimate
π^{0}-exchange

Papers: BPP and HKS

- JB, E. Pallante and J. Prades
- "Comment on the pion pole part of the light-by-light contribution to the muon g-2," Nucl. Phys. B 626 (2002) 410 [arXiv:hep-ph/0112255].
- "Analysis of the Hadronic Light-by-Light Contributions to the Muon $g-2, "$ Nucl. Phys. B 474 (1996) 379 [arXiv:hep-ph/9511388].
- "Hadronic light by light contributions to the muon g-2 in the large N_{c} limit," Phys. Rev. Lett. 75 (1995) 1447 [Erratum-ibid. 75 (1995) 3781] [arXiv:hep-ph/9505251].
- Hayakawa, Kinoshita, (Sanda)
- "Pseudoscalar pole terms in the hadronic light by light scattering contribution to muon g - 2," Phys. Rev. D57 (1998) 465-477. [hep-ph/9708227], Erratum-ibid.D66 (2002) 019902[hep-ph/0112102].
- "Hadronic light by light scattering contribution to muon g-2," Phys. Rev. D54 (1996) 3137-3153. [hep-ph/9601310].
- "Hadronic light by light scattering effect on muon g-2," Phys. Rev. Lett. 75 (1995) 790-793. [hep-ph/9503463].

Lessons for HLbL from model calculations

Johan Bijnens
ntroduction
General props
First real estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

Some main observations

- The largest constribution is π^{0} (and η, η^{\prime}) exchange/pole
- Beware: pole/exchange not quite the same
- Most evaluations are in reasonable agreement
- I will use it for an estimate of disconnected/connected on the lattice
- Took up a large part of yesterday (many speakers)
- The pion loop can be sizable but a large difference between the two evaluations
- For the pure pion loop part, even larger numbers have been proposed by Engel, Ramsey-Musolf
- Discussed below
- Another approach is the dispersive by Colangelo et al. (Stoffer)
- There are other contributions but the sum is smaller than the leading pseudo-scalar exchange
- BPP: $(8.3 \pm 3.2) 10^{-10}$

HKS: $(8.96 \pm 1.54) 10^{-10}$

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a1-exchange
Others
Summary
π^{0} exchange

π^{0} exchange

Lessons for
HLbL from
model
calculations

	$a_{\mu} \times 10^{10}$					
Cutoff			Pointlike	Transverse VMD	CELLO- VMD	
0.5	Point-like	$4.92(2)$	ENL-VMD	VMD	VMD	
0.7	$7.68(4)$	$4.24(4)$	$3.46(2)$	$3.60(3)$	$3.53(2)$	
1.0	$11.15(7)$	$4.90(5)$	$5.18(3)$	$4.73(4)$	$4.57(4)$	
2.0	$21.3(2)$	$5.63(8)$	$5.62(5)$	$6.39(9)$	$5.29(5)$	
4.0	$32.7(5)$	$6.22(17)$	$5.58(5)$	$6.59(16)$	$6.02(8)$	

Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
π^{0} exchange

Lund

UNIVERSITY

Lessons for HLbL from model calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange Disconnected connected

Quark-loop
Scalar
a_{1}-exchange
Others

Summary

- All in reasonable agreement

MV short-distance: π^{0} exchange

- K. Melnikov, A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]
- take $P_{1}^{2} \approx P_{2}^{2} \gg Q^{2}$: Leading term in OPE of two vector currents is proportional to axial current
- $\Pi^{\rho \nu \alpha \beta} \propto \frac{P_{\rho}}{P_{1}^{2}}\langle 0| T\left(J_{A \nu} J_{V \alpha} J_{V \beta}\right)|0\rangle$
- J_{A} comes from

- AVV triangle anomaly: extra info
- Implemented via setting one blob $=1$

LUND

UNiversity
Lessons for HLbL from model calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others

Summary
π^{0} exchange
LUNDUNIVERSITYLessons forHLbL from

- The pointlike vertex implements shortdistance part, not only π^{0}-exchange
- BPP quarkloop $+\pi^{0}$-exchange $\approx \mathrm{MV} \pi^{0}$-exchange
π^{0} exchange

Lund

UNIVERSITY

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction

General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others

Summary

Pseudoscalar exchange

Lessons for HLbL from model
calculations
Johan Bijnens
ntroduction
General props
First real
estimate
π^{0}-exchange
Disconnected connected
π-loop
Quark-loop

Disconnected/Connected

Disconnected

Disconnected

- Estimate the full result with pseudo-scalar exchange
- Connected diagrams only:
- the gluon exchanges responsible for $U(1)_{A}$ breaking are not included at all
- η^{\prime} becomes light, mainly $(\bar{u} u+\bar{d} d) / \sqrt{2}\left(\pi_{\eta}\right)$ and has the same mass as the pion
- Or the two-light states are $\pi_{u}(\bar{u} u)$ and $\pi_{d}(\bar{d} d)$
- η becomes mainly $\bar{s} s$ and much heavier than the pion (and thus small contribution)
- Assume that couplings are not affected (not too bad experimentally)

LUND
UNIVERSITY
Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

Disconnected/Connected

Lessons for HLbL from model calculations Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

- $\pi^{0}:\left(\frac{q_{u}^{2}-q_{d}^{2}}{\sqrt{2}}\right)^{2}=\frac{9}{162}$

Disconnected/Connected

- So in this limit:
- Two-flavour case
- $U(1)_{A}$ breaking makes π_{η} infinitely heavy
- Full result dominated by pseudo-scalar exchange
- $U(1)_{A}$ breaking does not affect couplings

Connected: $\frac{34}{162}$

- Disconnected: $-\frac{25}{162}$

Sum: $\frac{9}{162}$

- All assumptions get corrections but final conclusion stays

The disconnected contribution is expected to be large and of opposite sign with significant cancellations

- Argument used to go from large- N_{c} to $\pi^{0}, \eta, \eta^{\prime}$ in JB, Pallante, Prades, Nucl. Phys. B 474 (1996) 379 [arXiv:hep-ph/9511388]
- This form: JB, Relefors, JHEP 1609 (2016) 113 [arXiv:1608.01454]

LUND

UNIVERSITY

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others
Summary

Disconnected/Connected

- So in this limit:
- Two-flavour case
- $U(1)_{A}$ breaking makes π_{η} infinitely heavy
- Full result dominated by pseudo-scalar exchange
- $U(1)_{A}$ breaking does not affect couplings

Connected: $\frac{34}{162}$

- Disconnected: $-\frac{25}{162}$

Sum: $\frac{9}{162}$

- All assumptions get corrections but final conclusion stays

The disconnected contribution is expected to be large and of opposite sign with significant cancellations

- Argument used to go from large- N_{c} to $\pi^{0}, \eta, \eta^{\prime}$ in JB, Pallante, Prades, Nucl. Phys. B 474 (1996) 379 [arXiv:hep-ph/9511388]

UNIVERSITY

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
π^{0}-exchange
Disconnected/ connected
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others

Summary

- This form: JB, Relefors, JHEP 1609 (2016) 113 [arXiv:1608.01454]

π-loop

- A bare π-loop (sQED) give about $-4 \cdot 10^{-10}$
- The $\pi \pi \gamma^{*}$ vertex is always done using VMD
- $\pi \pi \gamma^{*} \gamma^{*}$ vertex two choices:
- Hidden local symmetry model: only one γ has VMD
- Full VMD
- Both are chirally symmetric
- The HLS model used has problems with $\pi^{+}-\pi^{0}$ mass difference (due to not having an a_{1})
- Final numbers quite different: -0.45 and $-1.9\left(\times 10^{-10}\right)$
- For BPP stopped at 1 GeV but within 10% of higher Λ

π loop: Bare vs VMD

LUND
 UNIVERSITY

Lessons for HLbL from model calculations

Johan Bijnens
ntroduction

General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others

Summary

- $I_{Q}=\log (Q / 1 \mathrm{GeV})$

π loop: VMD vs HLS

π loop

LUNDUNIVERSITY

Lessons for HLbL from model calculations

Johan Bijnens
ntroduction

General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a_{1}-exchange
Others

Summary

Usual HLS, $a=2$

```
LUND
UNIVERSITY
Lessons for
HLbL from
model
calculations
Johan Bijnens
Introduction
General props
First real
estimate
\pi
\pi-loop
Quark-loop

Lessons for HLbL from model
calculations
\(\pi\) loop: VMD vs charge radius

\section*{LUND}

UNiversity

Lessons for HLbL from model calculations

Johan Bijnens

Introduction

General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
\(a_{1}\)-exchange
Others
Summary
\(\pi\) loop: VMD vs \(L_{9}\) and \(L_{10}\)

\section*{LUND \\ UNIVERSITY}

Lessons for HLbL from model calculations

Johan Bijnens
ntroduction

General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
a1-exchange
Others

Summary

\section*{Include \(a_{1}\)}
```

UNIVERSITY
Lessons for HLbL from model
calculations
Johan Bijnens
Introduction
General props
First real
estimate
π^{0}-exchange
π-loop
Quark-loop
Scalar
a1-exchange
Others
Summary

```

\section*{Include \(a_{1}\)}

Lessons for
HLbL from model
calculations
Johan Bijnens
- Consistency problem: full \(a_{1}\)-loop?
- Treat \(a_{1}\) and \(\rho\) classical and \(\pi\) quantum: there must be a \(\pi\) that closes the loop
Argument: integrate out \(\rho\) and \(a_{1}\) classically, then do pion loops with the resulting Lagrangian
- To avoid problems: representation without \(a_{1}-\pi\) mixing
- Check for curiosity what happens if we add \(a_{1}\)-loop

Introduction
General props

\section*{\(a_{1}\)-loop: cases with good \(L_{9}\) and \(L_{10}\)}
Lund
UNIVERSITY
Lessons forHLbL frommodel
calculationsJohan Bijnensntroduction
General props
First rea
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
a1-exchange
Others
Summary
- Add \(F_{V}, G_{V}\) and \(F_{A}\)
- Fix values by Weinberg sum rules and VMD in \(\gamma^{*} \pi \pi\)
- no \(a_{1}\)-loop

\section*{Integration results}

\section*{LuND \\ UNIVERSITY}

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
a1-exchange
Others

Summary

\section*{Integration results with \(a_{1}\)}

Lessons for
HLbL from model
calculations
Johan Bijnens
- Problem: get high energy behaviour good enough
- But all models with reasonable \(L_{9}\) and \(L_{10}\) fall way inside the error quoted earlier \((-1.9 \pm 1.3) 10^{-10}\)
- Conclusion: Use hadrons only below about 1 GeV : \(a_{\mu}^{\pi-\text { loop }}=(-2.0 \pm 0.5) 10^{-10}\)
- Note that Engel and Ramsey-Musolf, arXiv:1309.2225 is a bit more pessimistic quoting numbers from ( -1.1 to -7.1 ) \(10^{-10}\)
- Does not include rescattering

\section*{Pure quark loop}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Cut-off \\
\(\Lambda\) \\
\((\mathrm{GeV})\)
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{7}\) \\
Electron \\
Loop
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{9}\) \\
Muon \\
Loop
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{9}\) \\
Constituent Quark \\
Loop
\end{tabular} \\
\hline 0.5 & \(2.41(8)\) & \(2.41(3)\) & \(0.395(4)\) \\
0.7 & \(2.60(10)\) & \(3.09(7)\) & \(0.705(9)\) \\
1.0 & \(2.59(7)\) & \(3.76(9)\) & \(1.10(2)\) \\
2.0 & \(2.60(6)\) & \(4.54(9)\) & \(1.81(5)\) \\
4.0 & \(2.75(9)\) & \(4.60(11)\) & \(2.27(7)\) \\
8.0 & \(2.57(6)\) & \(4.84(13)\) & \(2.58(7)\) \\
\hline Known Results & \(2.6252(4)\) & 4.65 & \(2.37(16)\) \\
\hline
\end{tabular}
- \(M_{Q}: 300 \mathrm{MeV}\)
- now known fully analytically
- Us: \(5+(3-1)\) integrals extra are Feynman parameters
- Slow convergence:
- electron: all at 500 MeV
- Muon: only half at 500 MeV , at 1 GeV still \(20 \%\) missing
- 300 MeV quark: at 2 GeV still \(25 \%\) missing

Lessons for HLbL from model calculations Johan Bijnens

Introduction

General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
\(a_{1}\)-exchange
Others
Summary

\section*{Pure quark loop: momentum area}
\[
\text { quark loop } \mathrm{m}_{\mathrm{Q}}=0.3 \mathrm{GeV}
\]
\[
\begin{aligned}
\mathrm{P}_{2} & =\mathrm{P}_{1} \\
\mathrm{P}_{2} & =\mathrm{P}_{1} / 2 \\
\mathrm{P}_{2} & \mathrm{P}_{1} / 4 \\
\mathrm{P}_{2} & \mathrm{P}_{1} 18
\end{aligned}
\]

\section*{LUND \\ UNIVERSITY}

Lessons for HLbL from model calculations

Johan Bijnens
ntroduction

General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
\(a_{1}\)-exchange
Others

Summary

Most from \(P_{1} \approx P_{2} \approx Q\), sizable large momentum part

\section*{ENJL quark-loop}
\begin{tabular}{|c|c|c|c|c|}
\hline Cut-off \(\Lambda\) GeV & \begin{tabular}{l}
\[
a_{\mu} \times 10^{10}
\] \\
VMD
\end{tabular} & \begin{tabular}{l}
\[
a_{\mu} \times 10^{10}
\] \\
ENJL
\end{tabular} & \begin{tabular}{l}
\[
a_{\mu} \times 10^{10}
\] \\
masscut
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
a_{\mu} \times 10^{10} \\
\text { sum }
\end{gathered}
\] \\
ENJL+masscut
\end{tabular} \\
\hline 0.5 & 0.48 & 0.78 & 2.46 & 3.2 \\
\hline 0.7 & 0.72 & 1.14 & 1.13 & 2.3 \\
\hline 1.0 & 0.87 & 1.44 & 0.59 & 2.0 \\
\hline 2.0 & 0.98 & 1.78 & 0.13 & 1.9 \\
\hline 4.0 & 0.98 & 1.98 & 0.03 & 2.0 \\
\hline 8.0 & 0.98 & 2.00 & . 005 & 2.0 \\
\hline
\end{tabular}

Lessons for HLbL from model calculations Johan Bijnens ntroduction

General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar

\section*{ENJL: scalar}

\section*{Lund \\ UNIVERSITY \\ \\ Lessons for \\ \\ Lessons for HLbL from HLbL from model model \\ \\ calculations \\ \\ calculations \\ \\ Johan Bijnens \\ \\ Johan Bijnens \\ Introduction \\ General props \\ First real \\ estimate \\ \(\pi^{0}\)-exchange}
\(\Pi^{\rho \nu \alpha \beta}=\bar{\Pi}_{a b}^{V V S}\left(p_{1}, r\right) g_{S}\left(1+g_{S} \Pi^{S}(r)\right) \bar{\Pi}_{c d}^{S V V}\left(p_{2}, p_{3}\right) \mathcal{V}^{a b c d \rho \nu \alpha \beta}\)
+ permutations
- \(g_{S}\left(1+g_{S} \Pi_{S}\right)=\frac{g_{A}\left(r^{2}\right)\left(2 M_{Q}\right)^{2}}{2 f^{2}\left(r^{2}\right)} \frac{1}{M_{S}^{2}\left(r^{2}\right)-r^{2}}\)
- \(\mathcal{V}^{\text {abcd } \rho \nu \alpha \beta}\) : ENJL VMD legs
- In ENJL only scalar+quark-loop properly chiral invariant

\section*{ENJL: scalar/QL}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Cut-off \\
\(\Lambda\) \\
GeV
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{10}\) \\
Quark-loop \\
VMD
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{10}\) \\
Quark-loop \\
ENJL
\end{tabular} & \begin{tabular}{c}
\(a_{\mu} \times 10^{10}\) \\
Scalar \\
Exchange
\end{tabular} \\
\hline 0.5 & 0.48 & 0.78 & -0.22 \\
0.7 & 0.72 & 1.14 & -0.46 \\
1.0 & 0.87 & 1.44 & -0.60 \\
2.0 & 0.98 & 1.78 & -0.68 \\
4.0 & 0.98 & 1.98 & -0.68 \\
8.0 & 0.98 & 2.00 & -0.68 \\
\hline
\end{tabular}
- ENJL only scalar+quark-loop properly chiral invariant
- Note: ENJL+scalar (BPP) \(\approx\) Quark-loop VMD (HKS)
- \(M_{S} \approx 620 \mathrm{MeV}\) certainly an overestimate for real scalars
- If scalar is \(\sigma\) : related to pion loop part?
- quark-loop: \(a_{\mu}^{q l} \approx 1 \times 10^{-10}\)

Lessons for HLbL from model
calculations Johan Bijnens

Introduction
General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
\(a_{1}\)-exchange

\section*{Quark loop DSE/ Nonlocal NJL}
- DSE model: \(a_{\mu}^{q l}=10.7(0.2) \times 10^{-10}\) T. Goecke, C. S. Fischer and R. Williams, arXiv:1210.1759
- Not a full calculation (yet) but includes an estimate of some of the missing parts
- a lot larger than bare quark loop with constituent mass
- DSE model (Maris-Roberts) does reproduces a lot of low-energy phenomenology. My guess was: numbers similar to ENJL.
- Can one find something in between full DSE and ENJL that is easier to handle?
- Nonlocal chiral quark model or nonlocal NJL (but no vector vertex, i.e. no rho) A. E. Dorokhov, A. E. Radzhabov and A. S. Zhevlakov, arXiv:1502.04487 [hep-ph].
\(a_{\mu}^{q l}=11.0(0.9) \times 10^{-10}\)

LUNDD
UNIVERSITY

Lessons for HLbL from model calculations Johan Bijnens

Introduction
General props
First real
estimate
\(\pi^{0}\)-exchange

\section*{Other quark loop}

\section*{Axial-vector exchange}

There is some pseudo-scalar exchange piece here as well, off-shell not quite clear what is what.
- \(a_{\mu}^{\text {axial }}=0.6 \times 10^{-10}\)
- MV: short distance enhancement + mixing (both enhance about the same) \(a_{\mu}^{\text {axial }}=2.2 \times 10^{-10}\)
- Jegerlehner (talk Mainz 2014) (0.76 \(\pm 0.27) 10^{-10}\)
- Pauk-Vanderhaeghen \((0.64 \pm 0.20) 10^{-10}\)

Lessons for
HLbL from model
calculations
Johan Bijnens
ntroduction
General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
\(a_{1}\)-exchange
Others
Summary

\section*{Others}
- There are many more estimates around of (heavier) scalars, tensors,...
- Typically \(\pm 0.310^{-10}\) or (much) smaller
- But there are many, so need an overall approach

\section*{Conclusions}

Lessons for HLbL from model
calculations
Johan Bijnens

Introduction
General props
First real
estimate
\(\pi^{0}\)-exchange
\(\pi\)-loop
Quark-loop
Scalar
a1-exchange
Others

Summary```

