New proposals for the space-like experimental measurements of HVP and the lattice QCD data

Marina Krstić Marinković

First Workshop of the Muon g - 2 Theory Initiative

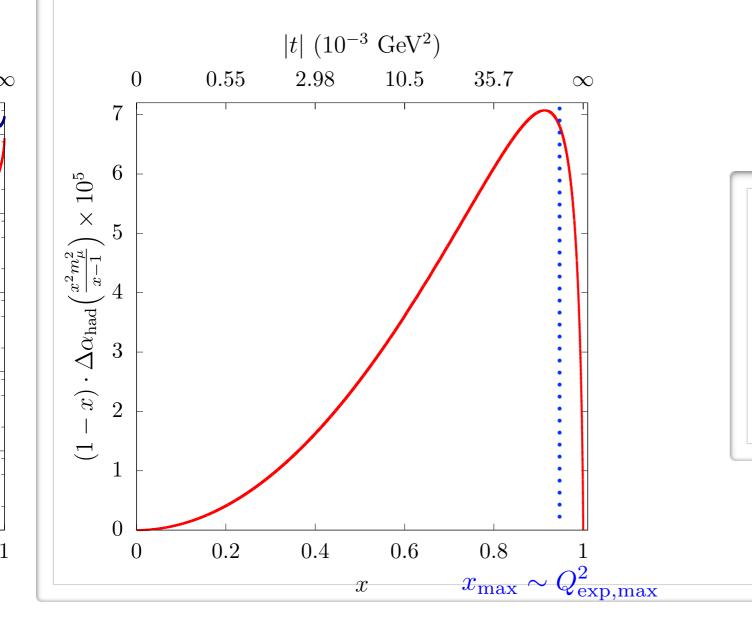
Fermilab, 2017, June 3-6

Proposals for new experimental measurements of a_{μ}^{HVP}

- Goal precision for HVP contribution to is <1%
- New proposals for the space-like experimental measurements of HVP
 - [Phys.Lett. B746 (2015) 325-329 by Carloni, Passera, Trentadue, Venanzoni] @KLOE2
 - [Eur.Phys.J. C77 (2017) XYZ-YYY by Abbiendi et al.] @CERN
- Estimated precision for the HVP from the µe scattering experiment is 0.3% [see slides by G. Venanzoni]

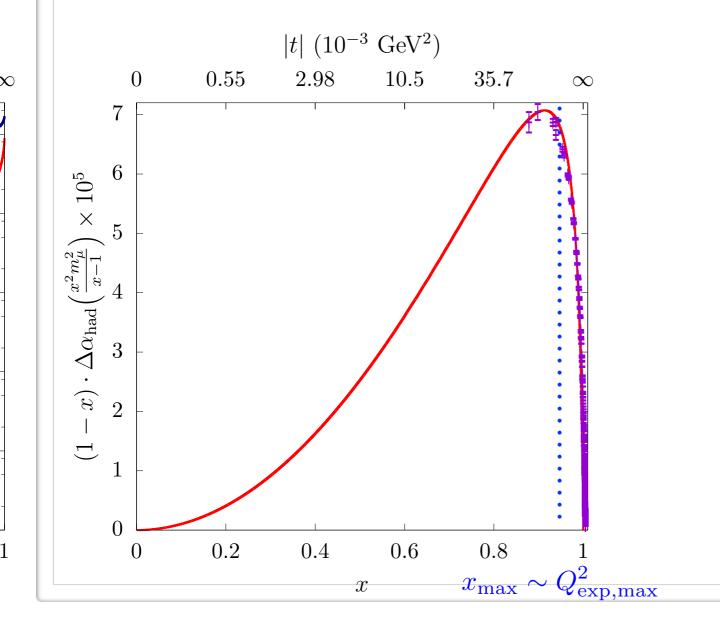
Relevance for lattice QCD determinations of HVP:

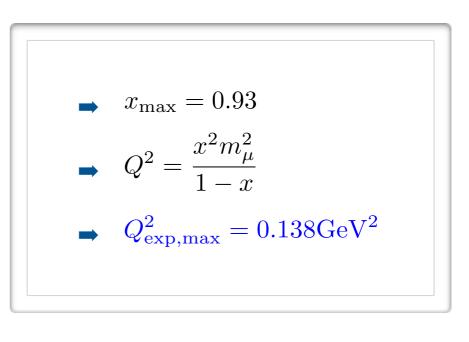
- 1. "hybrid method" [Phys. Rev. D 90, 074508 (2014) Golterman, Maltman, Peris] with experimental + lattice QCD data
 - a) to complete the exp. result
 - b) to cross-check lattice data
- 2. continuum limit of $\Pi(Q^2)$ at fixed **Q**²
- 3. help in choosing the parametrization for $\Pi(Q^2)$ with less FV/cutoff effects


Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

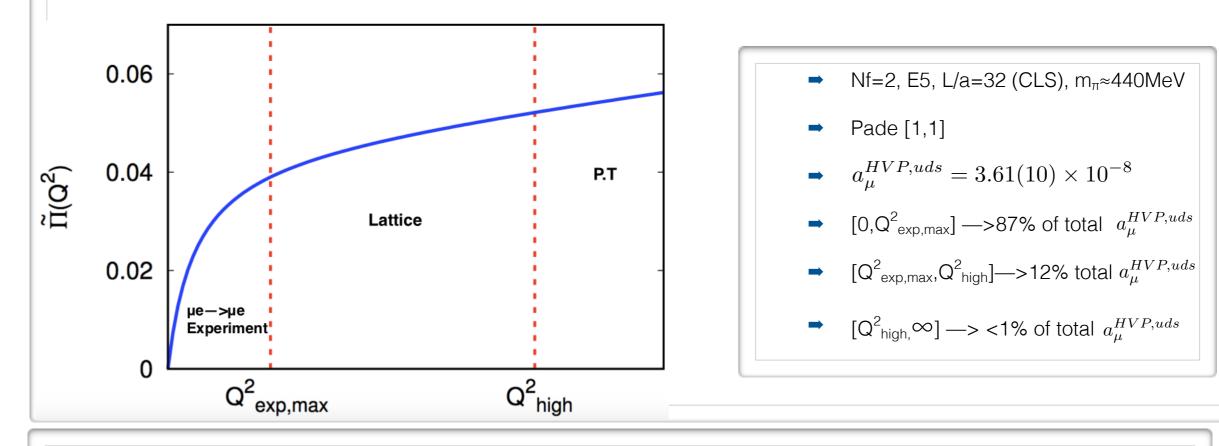
• Estimated precision for the HVP from the µe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni]

 $x_{\rm max} = 0.93$


→ $Q^2 = \frac{x^2 m_\mu^2}{1-x}$ → $Q_{\text{exp,max}}^2 = 0.138 \text{GeV}^2$


- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data


- Estimated precision for the HVP from the µe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni]
- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

- Estimated precision for the HVP from the µe exp. is 0.3% in [0,0.138]GeV² [see slides by G. Venanzoni]
- Due to the experimental constraints: region [0.138, ∞] GeV² cannot be covered by this exp.
 - complementary to the lattice QCD data

- ABGP Pade approximants [Aubin,Blum,Golterman,Peris, Phys.Rev. D86 (2012) 054509]:
 - guaranteed to converge on the interval [Q²_{exp,max},Q²_{high}]
 - possible to combine with the numerical integration

Cross-check experimental $\Pi(Q^2)$ vs. continuum limit from the lattice

- Take individual $\Pi(Q^2)$ values [0,0.108]GeV²
- Continuum limit at fixed Q^2 (previously extrapolated or measured at $\mathbf{m}_{\pi,phys}$)
- Compare to the slope and curvature for HVP function [see arXiv:1612.02364 and talk by L. Lellouch]

• For the continuum limit of $\Pi(Q^2)$ at fixed Q²:

- twisted bc's / SCI
- interpolate between the values measured by conventional methods

1. The HVP integral on a range $[Q^2_{min}, Q^2_{max}]$ has continuum&FV limit:

$$a^{HVP}_{\mu} = \left(\frac{\alpha}{\pi}\right)^2 \int_{Q^2_{exp,max}}^{\infty} dQ^2 \ f(Q^2) \times \tilde{\Pi}(Q^2)$$

- → isospin breaking effects not expected to be relevant (≈ 1‰)
- cutoff effects need to be assessed systematically

2. Please go back to your data sets, look in the momentum range $[0.138, \infty]$ GeV²

- Ideally, perform continuum limit (&infinite volume limit)
- Help us put together yet another estimate for a_{μ}^{HVP} joining th. and exp. efforts

QED+QCD simulations with C* bc's

- Generating configurations for $N_f=2+1 O(a)$ improved Wilson fermions (QCD, QCD+QED)
- Next 1-2 years, expect to have first results on a_{μ}^{HVP} and a_{μ}^{HLbL}
- Particularly convenient for computing isospin breaking effects
 - Iocal formulation of QED+QCD
 - ➡ different (smaller and better controlled?) F.V. effects

• **RC* collaboration:** P.Fritzsch, I.Campos, M.Hansen, B.Lucini, M.K.M, M.Papinutto, A. Patella,

A. Ramos, N.Tantalo, ...

- [A.Patella, M.K.M @ Lattice 2017] openQCD code —> added C* bc's and dynamical SU(3)+U(1)
- [M. Hansen @ Lattice 2017] —> first physics results with C* bc's