COTTINGHAM-TYPE FORMULA

FOR THE
 LbL CONTRIBUTION to HVP

Vladimir Pascalutsa
with

F. Hagelstein, J. Green, H. Meyer, A. Gerardin, ...

Institute for Nuclear Physics \& Cluster of Excellence PRISMA
University of Mainz, Germany
JG|U

Hadronic Contributions to g-2

$$
O\left(\alpha^{2}\right)
$$

Cottingham-type formula

$$
\begin{aligned}
& \text { thadronic LbL. contribution to VP } \\
& \Pi_{1}\left(q^{2}\right)=-\frac{1}{3 q^{2}} \int \frac{d^{4} k}{2 \pi)^{4} i} \cdot \frac{1}{k^{2}} \sum_{\substack{\lambda, \lambda^{\prime}}} M_{\lambda \lambda \lambda^{\prime} \lambda^{\prime}}\left(k \cdot q, k^{2}, q^{2}\right) \\
& =-\frac{1}{3 Q^{4}(2 \pi)^{3}} \int_{0}^{\infty} \mathrm{d} K^{2} \frac{1}{K^{2}} \int_{0}^{K^{2} Q^{2}} \mathrm{~d} v^{2}\left(\frac{K^{2} Q^{2}}{v^{2}}-1\right)^{1 / 2} \mathcal{M}\left(v^{2}, K^{2}, Q^{2}\right) \\
& \text { Euclidean LbL amplitude } \\
& \text { from Lattice QCD } \\
& \text { (talks by H. Meyer, } \\
& \text { A. Gerardin at LATTICE'17) }
\end{aligned}
$$

Isospin breaking of the nucleon mass

$$
M_{n}-M_{p}=1.2933322(4) \mathrm{MeV}
$$

	up	down
Mass (MeV)	$2.3\binom{+0.7}{-0.5}$	$4.8\binom{+0.5}{-0.3}$

from A.J. Portelli, talk at CD15
Vladimir Pascalutsa — LbL to HVP — g-2 Theory Initiative — Fermilab - June 3-7, 2017

Forward LbL contribution to g-2

$$
\Pi_{1}\left(Q^{2}\right)=-\frac{1}{3 Q^{4}(2 \pi)^{3}} \int_{0}^{\infty} \mathrm{d} K^{2} \frac{1}{K^{2}} \int_{0}^{K^{2} Q^{2}} \mathrm{~d} v^{2}\left(\frac{K^{2} Q^{2}}{v^{2}}-1\right)^{1 / 2} \mathcal{M}\left(v^{2}, K^{2}, Q^{2}\right)
$$

$$
\begin{aligned}
=\frac{\alpha}{\pi} \int_{0}^{\infty} \mathrm{d} Q^{2} \mathcal{K}\left(Q^{2}\right) \bar{\Pi}_{1}\left(Q^{2}\right) & \\
& \mathcal{K}\left(Q^{2}\right)=\frac{1}{2 m_{\mu}^{2}} \frac{(v-1)^{3}}{2 v(v+1)}, \quad v=\sqrt{1+\frac{4 m_{\mu}^{2}}{Q^{2}}}
\end{aligned}
$$

$$
\bar{\Pi}\left(q^{2}\right)=\Pi\left(q^{2}\right)-\Pi(0)
$$

Dispersion relations for light-by-light

(talks by Danilkin, Dai, Redmer)

$$
\begin{aligned}
& \mu\left(\nu, K^{2}, Q^{2}\right)=\mu\left(0, K^{2}, Q^{2}\right) \\
& +\frac{4 \nu^{2}}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \frac{\sqrt{\nu^{\prime 2}-k^{2} Q^{2}}}{\nu^{\prime}\left(v^{\prime 2}-\nu^{2}\right)}\left[4 \sigma_{T r}+2\left(\sigma_{T L}+\sigma_{L T}\right)+\sigma_{L L}\right]\left(\nu^{\prime}, k_{1}^{2}, Q^{2}\right)
\end{aligned}
$$

Two ways to do dispersion relations

Concl.:

1) empirically inchuded in LO VP (FSR + rad.corr.), albeit approximately.
2) Lattice
za) QCD + QED VP (talks by c. Lehner, M. Marinkovic)
2b) $Q C D$ LbL contrib. to VP (talks by H. Meyer, L. Jin)
3) Dispersim theory

3a) $\quad \gamma^{*} \rightarrow$ hadrons $+\gamma^{(*)}$
36) $\gamma^{*} \gamma^{*} \rightarrow$ hadrons

Testing ground for $L_{b} L$ calculations

