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5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(↵3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.40. They have been estimated first
in [100]. Classes (a) to (c) involve leading HVP insertions and may be treated us-
ing DRs together with experimental e+e�–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 345, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scattering which is con-
strained by experimental data only for one exceptional line of phase space. The eval-
uation of this contribution is particularly di�cult and it will be discussed in the next
section.

The O(↵3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.
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Fig. 5.40: Hadronic higher order contributions: a)-c) involving LO vacuum polariza-
tion, d) involving HO vacuum polarization and e) involving light-by-light scattering

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.
Class (a) consists of a subset of 12 diagrams of Fig. 4.3: diagrams 7) to 18) plus
2 diagrams obtained from diagram 22) by replacing one muon–loop by a hadronic
“bubble”, and yields a contribution of the type

a(6) had[(a)]
µ =

✓↵

⇡

◆3 2
3

1
Z

4m2
⇡

ds
s

R(s) K[(a)]
⇣

s/m2
µ

⌘

(5.96)

where K[(a)](s/m2
µ) is a QED function which was obtained analytically by Barbieri

and Remiddi [180]. The kernel function is the contribution to aµ of the 14 two–loop
diagrams obtained from diagrams 1) to 7) of Fig. 4.2 by replacing one of the two
photons by a “heavy photon” of mass

p
s. The convolution (5.96) then provides the

insertion of a photon self–energy part into the photon line represented by the “heavy
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Hadronic Contributions to g-2
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Cottingham-type formula
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where
M(k, q) ⌘ gµ1µ3 gµ2µ4Mµ1µ2µ3µ4(k, q) (4)

is the traced LbL amplitude.
The traced amplitude is a scalar function of three invariants: k

2, q

2, and n ⌘ k · q. It is even
in n and symmetric under the interchange of k and q. We shall write it as M(n2; K

2, Q

2), where
K

2 = �k

2 and Q

2 = �q

2 will further be assumed to be positive, i.e., the photons are spacelike.
Introducing the helicity LbL amplitude as

Ml1l2l3l4 = #
µ1
l1
(q1) #

µ2
l2
(q2) #

⇤µ3
l3

(q3)#
⇤µ4
l4

(q4)Mµ1µ2µ3µ4 (5)

with #
µ
l(q) the photon polarization vectors, the traced amplitude can be written as:

M = Â
l,s=±,0

Mlsls = 4M
TT

+ 2M
LT

+ 2M
TL

+M
LL

(6)

where

M
TT

= 1
2
�

M++++ + M+�+�
�
, M

LL

= M0000 ,
M

LT

= M0+0+, M
TL

= M+0+0 . (7)

The latter amplitudes, via the optical theorem, relate to the g⇤g⇤–fusion cross sections of two
spacelike photons, e.g.:

ImM
TT

= 2X

1/2s
TT

(8)

with X = n2 � K

2
Q

2.
At the same time, the analytic properties of n-dependence warrant the dispersive representa-

tion,

M(n2; K

2, Q

2) =
2
p

•Z

n0

dn0
n0 ImM(n0, K

2, Q

2)
n0 2 � n2 � i0+

, (9)

where ImM is the discontinuity across the s-channel branch cuts associated with gg-fusion pro-
cesses; n0 is the threshold (e.g., for e

+
e

� production, n0 = 2m

2
e

+ 1/2(K2 + Q

2)).
The dispersive representation justifies the Wick rotation in the evaluation of Eq. (3) and we

obtain (cf. Appendix, for details):

P1(Q
2) = � 1

3Q

4(2p)3

•Z

0

dK

2 1
K

2

K

2
Q

2Z

0

dn2
✓

K

2
Q

2

n2 � 1
◆1/2

M(n2, K

2, Q

2) (10a)

= � 1
3Q

2(2p)3

pZ

0

dc sin2 c

•Z

0

dK

2 M(K2
Q

2 cos2 c, K

2, Q

2) (10b)

The two expressions are related by the substitution: n = KQ cos c.

3. Renormalization.
The electromagnetic field renormalization amounts to a subtraction at q

2 = 0, hence the renor-
malized VP is obtained as P(q2) = P(q2)� P(0). Let us therefore consider the limit of Q

2 ! 0
in Eq. (10).
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Isospin breaking of the nucleon mass
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Results for the nucleon mass splitting

29

(
M

n
�

M
p
)

Q
E
D
(
M
e
V
)

(Mn �Mp)QCD (MeV)

[Gasser & Leutwyler, 1982]

[Walker-Loud et al., 2012]
[NPLQCD, 2007]

[QCDSF, 2012]

[RM123, 2013]

[Shanahan et al., 2012]
no beta-decay
experiment

[RBC-UKQCD, 2010] (EQ)

[BMWc, 2013] (EQ)

[BMWc, 2015a]

[QCDSF, 2014]

�2.5

�2

�1.5

�1

�0.5

0

1 1.5 2 2.5 3 3.5 4 4.5

from A.J. Portelli, talk at CD15

Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.

❖ Isospin symmetry is explicitly broken by:

• the up and down quark mass difference  
                              

• the up and down electric charge difference  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Nucleon mass splitting
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Mn �Mp = 1.2933322(4) MeV

Figure B.1: Contribution to the nucleon self-energy with photon loop.

with
T µ
µ (⌫, Q

2
) = �3T1(⌫, Q

2
) +

Q2

Q2
+ ⌫2

T2(⌫, Q
2
), (B.2)

in terms of the lab-frame photon energy ⌫ and the photon virtuality Q2. Assuming un-
subtracted dispersion relations for the spin-independent Compton scattering amplitudes:

T1(⌫, Q
2
) =

2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2�T (⌫ 0, Q2
)

⌫ 0 2 � ⌫2 � i0+
, (B.3a)

T2(⌫, Q
2
) =

2Q2

⇡

Z 1

⌫el

d⌫ 0 ⌫ 0 2
[�T + �L](⌫ 0, Q2

)

(⌫ 0 2
+Q2

)(⌫ 0 2 � ⌫2 � i0+)
, (B.3b)

we find:

�M =

2

⇡

Z

d

4q

(2⇡)4 i

1

Q2

Z 1

⌫el

d⌫ 0
�3 �T (⌫ 0, Q2

) +

Q2+⌫2

Q2+⌫0 2
[�T + �L] (⌫ 0, Q2

)

⌫ 0 2 � ⌫2
. (B.4)

In the following, we Wick rotate, replace the integration over q4 by hyperspherical coordi-
nates and substitute ⌫ 0 by the Mandelstam variable s. Our final expression reads:

�M =

Z 1

0

dQ2 IM(Q2
), (B.5a)

1

16⇡3M

Z 1

0

dQ2

Q2

Z 1

s0

ds
n

(3� 4vs) �T (s,Q
2
) (B.5b)

+

(vs � 1)

2
(1 + 2vs) �L(s,Q2

) + �T (s,Q2
)

v2s

o

,

where all angular integrations have been performed and we introduced:

vs =

s

1 +

4M2Q2

(s�M2
+Q2

)

2
. (B.6)

The separate contribution of T1(0, Q2
) reads:

�M subtr.
= � 3

(2⇡)3

Z 1

0

dQ2

Z 1

s0

ds

2M
�T (s,Q

2
). (B.7)
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Forward LbL contribution to g-2
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where
M(k, q) ⌘ gµ1µ3 gµ2µ4Mµ1µ2µ3µ4(k, q) (4)

is the traced LbL amplitude.
The traced amplitude is a scalar function of three invariants: k

2, q

2, and n ⌘ k · q. It is even
in n and symmetric under the interchange of k and q. We shall write it as M(n2; K

2, Q

2), where
K

2 = �k

2 and Q

2 = �q

2 will further be assumed to be positive, i.e., the photons are spacelike.
Introducing the helicity LbL amplitude as

Ml1l2l3l4 = #
µ1
l1
(q1) #

µ2
l2
(q2) #

⇤µ3
l3

(q3)#
⇤µ4
l4

(q4)Mµ1µ2µ3µ4 (5)

with #
µ
l(q) the photon polarization vectors, the traced amplitude can be written as:

M = Â
l,s=±,0

Mlsls = 4M
TT

+ 2M
LT

+ 2M
TL

+M
LL

(6)

where

M
TT

= 1
2
�

M++++ + M+�+�
�
, M

LL

= M0000 ,
M

LT

= M0+0+, M
TL

= M+0+0 . (7)

The latter amplitudes, via the optical theorem, relate to the g⇤g⇤–fusion cross sections of two
spacelike photons, e.g.:

ImM
TT

= 2X

1/2s
TT

(8)

with X = n2 � K

2
Q

2.
At the same time, the analytic properties of n-dependence warrant the dispersive representa-

tion,

M(n2; K

2, Q

2) =
2
p

•Z

n0

dn0
n0 ImM(n0, K

2, Q

2)
n0 2 � n2 � i0+

, (9)

where ImM is the discontinuity across the s-channel branch cuts associated with gg-fusion pro-
cesses; n0 is the threshold (e.g., for e

+
e

� production, n0 = 2m

2
e

+ 1/2(K2 + Q

2)).
The dispersive representation justifies the Wick rotation in the evaluation of Eq. (3) and we

obtain (cf. Appendix, for details):

P1(Q
2) = � 1

3Q

4(2p)3

•Z

0

dK

2 1
K

2

K

2
Q

2Z

0

dn2
✓

K

2
Q

2

n2 � 1
◆1/2

M(n2, K

2, Q

2) (10a)

= � 1
3Q

2(2p)3

pZ

0

dc sin2 c

•Z

0

dK

2 M(K2
Q

2 cos2 c, K

2, Q

2) (10b)

The two expressions are related by the substitution: n = KQ cos c.

3. Renormalization.
The electromagnetic field renormalization amounts to a subtraction at q

2 = 0, hence the renor-
malized VP is obtained as P(q2) = P(q2)� P(0). Let us therefore consider the limit of Q

2 ! 0
in Eq. (10).
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5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(↵3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.40. They have been estimated first
in [100]. Classes (a) to (c) involve leading HVP insertions and may be treated us-
ing DRs together with experimental e+e�–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 345, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scattering which is con-
strained by experimental data only for one exceptional line of phase space. The eval-
uation of this contribution is particularly di�cult and it will be discussed in the next
section.

The O(↵3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.
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Fig. 5.40: Hadronic higher order contributions: a)-c) involving LO vacuum polariza-
tion, d) involving HO vacuum polarization and e) involving light-by-light scattering

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.
Class (a) consists of a subset of 12 diagrams of Fig. 4.3: diagrams 7) to 18) plus
2 diagrams obtained from diagram 22) by replacing one muon–loop by a hadronic
“bubble”, and yields a contribution of the type

a(6) had[(a)]
µ =

✓↵

⇡

◆3 2
3

1
Z

4m2
⇡

ds
s

R(s) K[(a)]
⇣

s/m2
µ

⌘

(5.96)

where K[(a)](s/m2
µ) is a QED function which was obtained analytically by Barbieri

and Remiddi [180]. The kernel function is the contribution to aµ of the 14 two–loop
diagrams obtained from diagrams 1) to 7) of Fig. 4.2 by replacing one of the two
photons by a “heavy photon” of mass

p
s. The convolution (5.96) then provides the

insertion of a photon self–energy part into the photon line represented by the “heavy

4. Muon anomalous magnetic moment, aµ = 1
2 (g � 2)µ.

The VP contribution to aµ can be written as:

a

(1)
µ =

a

p

•Z

0

dQ

2 K(Q2)P1(Q
2) (18)

where the kernel function is given by

K(Q2) =
1

2m

2
µ

(v � 1)3

2v(v + 1)
, v =

s

1 +
4m

2
µ

Q

2 , (19)

with mµ the muon mass. Leaving P1 out of this formula would give us the Schwinger’s correction,
aµ = a/2p. Therefore, substituting the renormalized VP, we obtain:

a

(1)
µ = � a

2p
P1(0) +

a

p

•Z

0

dQ

2 K(Q2)P1(Q
2) (20)

Appendix A. Master Formula

All relevant LbL amplitudes are even in n = q · k and require one subtraction [1, Section II. C].
The optical theorem relates the imaginary part of each amplitudes to a g⇤g⇤-fusion cross section
[1, Eq. (16)]:

ImM(n, k

2, q

2) = 2
p

X s(n, k

2, q

2), (A.1)

where s = 4s
TT

+ 2s
TL

+ 2s
LT

+ s
LL

, and X = n2 � q

2
k

2. The photon virtualities must be space-
like, Q

2 = �q

2 � 0, K

2 = �k

2 � 0.
The once-subtracted amplitudes is then given by the following DR:

M(n, k

2, q

2) =
4n2

p

Z •

n0

dn0

n0

p
X

0 s(n0, k

2, q

2)
n0 2 � n2 , (A.2)

where X

0 = n0 2 � q

2
k

2.
The vacuum polarization contribution originating from a contracted LbL amplitude, which

obeys Eq. (A.2), is given by:

P1(q
2) = � 1

3q

2

Z d4
k

i(2p)4
M(k, q)

k

2 (A.3a)

=
1

6p3
Q

2

Z •
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dK

2
Z •

n0

dn0

n0
p
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0 s(n0, K

2, Q

2)

"
1
2
� n0 2

K

2
Q

2 �

s
n0 2

K

2
Q

2

✓
n0 2

K

2
Q

2 � 1
◆#

= � 1
6p3

Q

2

Z •

0
dK

2
Z •

s0

ds

0

s

0 + K

2 + Q

2

p
X

0 s(s0, K

2, Q

2)

"
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2
+
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0

K

2
Q

2 +

s
X

0

K

2
Q

2

✓
1 +

X

0

K

2
Q

2

◆#
.
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4. Muon anomalous magnetic moment, aµ = 1
2 (g � 2)µ.

The VP contribution to aµ can be written as:

a

(1)
µ =

a
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•Z

0

dQ

2 K(Q2)P1(Q
2) (18)

where the kernel function is given by

K(Q2) =
1

2m

2
µ

(v � 1)3

2v(v + 1)
, v =

s

1 +
4m

2
µ

Q

2 , (19)

with mµ the muon mass. Leaving P1 out of this formula would give us the Schwinger’s correction,
aµ = a/2p. Therefore, substituting the renormalized VP, we obtain:

a

(1)
µ = � a

2p
P1(0) +

a

p

•Z

0

dQ

2 K(Q2)P1(Q
2) (20)

Appendix A. Master Formula

All relevant LbL amplitudes are even in n = q · k and require one subtraction [1, Section II. C].
The optical theorem relates the imaginary part of each amplitudes to a g⇤g⇤-fusion cross section
[1, Eq. (16)]:
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where
M(k, q) ⌘ gµ1µ3 gµ2µ4Mµ1µ2µ3µ4(k, q) (4)

is the traced LbL amplitude.
The traced amplitude is a scalar function of three invariants: k

2, q

2, and n ⌘ k · q. It is even
in n and symmetric under the interchange of k and q. We shall write it as M(n2; K

2, Q

2), where
K

2 = �k

2 and Q

2 = �q

2 will further be assumed to be positive, i.e., the photons are spacelike.
Introducing the helicity LbL amplitude as

Ml1l2l3l4 = #
µ1
l1
(q1) #

µ2
l2
(q2) #

⇤µ3
l3

(q3)#
⇤µ4
l4

(q4)Mµ1µ2µ3µ4 (5)

with #
µ
l(q) the photon polarization vectors, the traced amplitude can be written as:

M = Â
l,s=±,0

Mlsls = 4M
TT

+ 2M
LT

+ 2M
TL

+M
LL

(6)

where

M
TT

= 1
2
�

M++++ + M+�+�
�
, M

LL

= M0000 ,
M

LT

= M0+0+, M
TL

= M+0+0 . (7)

The latter amplitudes, via the optical theorem, relate to the g⇤g⇤–fusion cross sections of two
spacelike photons, e.g.:

ImM
TT

= 2X

1/2s
TT

(8)

with X = n2 � K

2
Q

2.
At the same time, the analytic properties of n-dependence warrant the dispersive representa-

tion,

M(n2; K

2, Q

2) =
2
p

•Z

n0

dn0
n0 ImM(n0, K

2, Q

2)
n0 2 � n2 � i0+

, (9)

where ImM is the discontinuity across the s-channel branch cuts associated with gg-fusion pro-
cesses; n0 is the threshold (e.g., for e

+
e

� production, n0 = 2m

2
e

+ 1/2(K2 + Q

2)).
The dispersive representation justifies the Wick rotation in the evaluation of Eq. (3) and we

obtain (cf. Appendix, for details):

P1(Q
2) = � 1

3Q

4(2p)3

•Z

0

dK

2 1
K

2

K

2
Q

2Z

0

dn2
✓

K

2
Q

2

n2 � 1
◆1/2

M(n2, K

2, Q

2) (10a)

= � 1
3Q

2(2p)3

pZ

0

dc sin2 c

•Z

0

dK

2 M(K2
Q

2 cos2 c, K

2, Q

2) (10b)

The two expressions are related by the substitution: n = KQ cos c.

3. Renormalization.
The electromagnetic field renormalization amounts to a subtraction at q

2 = 0, hence the renor-
malized VP is obtained as P(q2) = P(q2)� P(0). Let us therefore consider the limit of Q

2 ! 0
in Eq. (10).

2
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Dispersion relations for light-by-light
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Two ways to do dispersion relations
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376 5 Hadronic E↵ects

5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(↵3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.40. They have been estimated first
in [100]. Classes (a) to (c) involve leading HVP insertions and may be treated us-
ing DRs together with experimental e+e�–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 345, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scattering which is con-
strained by experimental data only for one exceptional line of phase space. The eval-
uation of this contribution is particularly di�cult and it will be discussed in the next
section.

The O(↵3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.

h e h h h
µ

�

h

a) b) c)

d) e)
h

Fig. 5.40: Hadronic higher order contributions: a)-c) involving LO vacuum polariza-
tion, d) involving HO vacuum polarization and e) involving light-by-light scattering

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.
Class (a) consists of a subset of 12 diagrams of Fig. 4.3: diagrams 7) to 18) plus
2 diagrams obtained from diagram 22) by replacing one muon–loop by a hadronic
“bubble”, and yields a contribution of the type

a(6) had[(a)]
µ =

✓↵

⇡

◆3 2
3

1
Z

4m2
⇡

ds
s

R(s) K[(a)]
⇣

s/m2
µ

⌘

(5.96)

where K[(a)](s/m2
µ) is a QED function which was obtained analytically by Barbieri

and Remiddi [180]. The kernel function is the contribution to aµ of the 14 two–loop
diagrams obtained from diagrams 1) to 7) of Fig. 4.2 by replacing one of the two
photons by a “heavy photon” of mass

p
s. The convolution (5.96) then provides the

insertion of a photon self–energy part into the photon line represented by the “heavy

(talks by H. Meyer, L. Jin) 

(talks by C. Lehner, M. Marinkovic) 


