

Light-by-light sum rules and dispersive analysis of $\gamma\gamma^* \rightarrow \pi\pi$ **Igor Danilkin**

in coll. with Marc Vanderhaeghen

JGU

June 5, 2017

IDUANINES GI ITFNRFRG

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

(g-2) theory vs exp

Experiment:

$$a_{\mu}^{exp} = (11\,659\,208.9\,\pm\,6.3) \times 10^{-10}$$

Theory:

$$a_{\mu}^{SM} = (11\,659\,182.8\,\pm\,4.9) \times 10^{-10}$$

3 - 4 σ deviation !

FNAL, J-PARC experiments

QCD contribution to (g-2)

$$a_{\mu}^{QCD} = (695.6 \pm 4.9) \times 10^{-10}$$

Hagiwara (2011) Jegerlehnner (2015)

Hadronic vacuum polarization

 $a_{\mu}^{QCD, VP[LO]} = (694.9 \pm 4.3) \times 10^{-10}$ $a_{\mu}^{QCD, VP[HO]} = (-9.8 \pm 0.1) \times 10^{-10}$

relies on experiment $e^+e^- \rightarrow hadrons$ through unitarity

$$\sigma(s)_{e^+e^- \to hadrons}$$

Hadronic light-by-light scattering

$$a_{\mu}^{QCD, \ LbL} = (10.5 \pm 2.6) \times 10^{-10}$$

= $(10.2 \pm 3.9) \times 10^{-10}$

relies on measurements of **TFF** to reduce model dependence

 $\pi^0 \gamma^* \gamma^{(*)}, \eta \gamma^* \gamma^{(*)}, \dots$ $f_1 \gamma^* \gamma^{(*)}, f_2 \gamma^* \gamma^{(*)}, \dots$

QCD contribution to (g-2)

relies on measurements of **TFF** to reduce model dependence

$$\pi^0 \gamma^* \gamma^{(*)}, \eta \gamma^* \gamma^{(*)}, \dots$$
$$f_1 \gamma^* \gamma^{(*)}, f_2 \gamma^* \gamma^{(*)}, \dots$$

Timelike: KLOE, MAMI/A2, NA62

Spacelike: CLEO, BaBar, Belle, BESIII

Helicity amplitudes

$$M_{\lambda_1'\lambda_2'\lambda_1\lambda_2} = M^{\mu\nu\alpha\beta}\epsilon_{\mu}^*(\lambda_1')\epsilon_{\nu}^*(\lambda_2')\epsilon_{\alpha}(\lambda_1)\epsilon_{\beta}(\lambda_2)$$

Forward scattering $q_1 = q_1', q_2 = q_2'$

$$\lambda_i = \pm 1, 0$$
$$q_i^2 = -Q_i^2$$

$$s = (q_1 + q_2)^2$$

 $t = (q_1 - q'_1)^2 = 0$

Unitarity 2 Im $\frac{m}{m} = \sum_{f} \int d\Pi_{f} \frac{m}{m} = f \int d\Pi_{f}$

For the forward scattering (optical theorem)

Unitarity

$$\operatorname{Im} M_{++,--} = 2\sqrt{X} \left(\sigma_{\parallel} - \sigma_{\perp}\right)$$

...

Analyticity (fixed t dispersion relation)

$$M_{++,--}(\nu) = \int_{\nu_0}^{\infty} \frac{d\nu'}{\pi} \frac{2\nu' \operatorname{Im} M_{++,--}(\nu')}{\nu'^2 - \nu^2 + i0}, \quad \nu = \frac{s-u}{4}$$

... (modulo subtractions)

Matching around $\nu = 0$ to the LbL Lagrangian

$$\mathcal{L} = c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \dots$$

yield a number of **constraints** for Im M, and thus **on cross section**

LbL sum rules

Three super convergence relations

 $\mathbf{\infty}$

Gerasimov, Moulin (1975), Brodsky, Schmidt (1995)

These sum rules have been tested in perturbative QFT both at tree-level and one loop level:

Meson production

Narrow width approximation

$$\sigma\left(\gamma^*\gamma \to J^P(\Lambda)\right) = \delta(s-m^2) \, 8\pi^2 \frac{\left(2J+1\right)\Gamma_{\gamma\gamma}\left(J^P\right)}{m} \left(1+\frac{Q^2}{m^2}\right) \left[T^{(\Lambda)}\left(Q^2\right)\right]^2$$

Sum rules will relate 2γ width or TFFs:

Sum rule I (Isospin=0)

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q^2)} \, \left[\sigma_2 - \sigma_0\right]$$

$$0 = -\sum_{\mathcal{P}} 16\pi^2 \frac{\Gamma_{\gamma\gamma}(\mathcal{P})}{m_{\mathcal{P}}^3} \left[T_{\mathcal{P}}(Q^2) \right]^2 - \sum_{\mathcal{S},\mathcal{A}} \dots + \sum_{\mathcal{T}} 16\pi^2 \frac{\Gamma_{\gamma\gamma}(\mathcal{T})}{m_{\mathcal{T}}^3} \left(\left[T_{\mathcal{T}}^{(\Lambda=2)}(Q^2) \right]^2 - \left[T_{\mathcal{T}}^{(\Lambda=0)}(Q^2) \right]^2 \right)$$

Dominant contributions

State	m (MeV)	$\Gamma_{\gamma\gamma}$ (keV)	$\frac{\mathrm{SR}_1\left(Q^2=0\right)}{(nb)}$	0.500			Belle (2015)			
η η'	547.862±0.017 957±0.06	0.516±0.020 4.35±0.25	-193±7 -304±17	0.100 (C) (C)		-+++++++++++++++++++++++++++++++++++++				
$f_2(1270)$	1275.5±0.8	2.93±0.40	(Λ =2) 434±60 (Λ =0) \approx 0	► 0.010 0.005	•	•	+	I	•	- - - - - -
<i>f</i> ₂ (1565)	1562±13	0.70±0.14	56±11	0.001	5	10 Q	15 2(GeV ²)	20	25	30
sum			-7±64				Pas	caluts	a, Pau	ik
			10				vai	(201	2)	

Belle (2015)

$$T^{(\Lambda)}(Q^2) = Factor(Q^2) \times \frac{1}{\left(1 + \frac{Q^2}{\lambda_{(\Lambda)}^2}\right)^2}$$

$$\lambda_{\Lambda=2} = 1222 \pm 66 \text{ MeV}$$
$$\lambda_{\Lambda=(0,T)} = 1051 \pm 36 \text{ MeV}$$

Sum rule I (Isospin=0)

Sum rule I (Isospin=0)

*f*₂(1565), ∧=2

sum

η

n'

4

5

I.D., Vanderhaeghen

(2016)

future Belle data

3

2

 $Q^2(GeV^2)$

Meson contributions to (g-2)

Results (excluding low energy region):

$$a_{\mu}[f_{0}(980), a_{0}(980)] = (-0.03 \pm 0.01) \times 10^{-10}$$

$$a_{\mu}[f_{2}(1270), f_{2}(1565), a_{2}(1320), a_{2}(1700)] = (0.1 \pm 0.01) \times 10^{-10}$$

$$T_{a_{i}}(Q^{2}) \approx T_{f_{i}}(Q^{2})$$

New evaluation of axial vector contributions (satisfying Landau-Yang theorem)

 $a_{\mu}[f_1(1285), f_1(1420)] = (0.64 \pm 0.20) \times 10^{-10}$ = $(0.75 \pm 0.27) \times 10^{-10}$

14

Pauk, Vdh (2013) Jegerlehner (2015)

Compared to $(1.5 \pm 1.0) 10^{-10}$ (which enters the Glasgow consensus)

$$\delta a_{\mu}^{exp} = 1.6 \times 10^{-10}$$

FNAL, J-PARC experiments

Improvements: Multi-meson production

Important contributions beyond pseudo-scalar poles

dispersive analysis for $\pi\pi, \pi\eta, \dots$ loops

Important ingredient: $\gamma \gamma^* \rightarrow \pi \pi, \pi \eta, ...$

Pauk, Vanderhaeghen, (2014)

Colangelo, Hoferichter, Procura, Stoffer, (2014, 2015)

 $\gamma\gamma \rightarrow \pi\pi$, KK, $\eta\eta$, $\pi\eta$ (Belle: 07,08, 09, 10, ..) $\gamma\gamma^* \rightarrow \pi\pi$, $\pi\eta$ (BESIII in progress)

Cross section

Helicity amplitudes

$$H_{\lambda_1\lambda_2} = H^{\mu\nu}\epsilon_{\mu}(\lambda_1)\epsilon_{\nu}(\lambda_2), \quad \lambda_1 = \pm 1, \, \lambda_2 = \pm 1, \, 0$$

P symmetry:

6 🧼 3 in

3 independent amplitudes

$$H_{++}, H_{+-}, H_{+0}$$

Differential cross section

$$\frac{d\sigma}{d\,\cos\theta} = \pi\alpha^2 \frac{\rho(s)}{4\,(s+Q^2)} \,\left(|H_{++}|^2 + |H_{+-}|^2 + |H_{+0}|^2\right)$$

Born amplitudes $(Q^2 \neq 0)$

Vertex $\pi\pi\gamma^*$

$$\langle \pi^+ | j_\mu(0) | \pi^+(p') \rangle = (p+p')_\mu F_\pi(Q^2)$$

Space-like region

 $F_{\pi}(Q^2) = \frac{1}{1 + Q^2/M_{\rho}^2}$

Born amplitudes $(Q^2 \neq 0)$

Differential cross section

$$\frac{d\sigma}{d\cos\theta} = \pi\alpha^2 \frac{\rho(s)}{4(s+Q^2)} \left(|H_{++}|^2 + |H_{+-}|^2 + |H_{+0}|^2\right)$$

Unitarity

These "diagonalise unitarity" and contain resonance information

Definite: J, λ_1, λ_2

$$\operatorname{Im} h_{\gamma\gamma^* \to \pi\pi}(s) = h_{\gamma\gamma^* \to \pi\pi}(s) \,\rho_{\pi\pi}(s) \,t^*_{\pi\pi \to \pi\pi}(s)$$

Coupled channel Unitarity

Coupled-channel unitarity

Definite: J, λ_1 , λ_2

$$\operatorname{Im} h_{\gamma\gamma^*,b}(s) = \sum_f h_{\gamma\gamma^*,f}(s) \,\rho_f(s) \, t_{fb}^*(s)$$

$$\operatorname{Im} h_{\gamma\gamma^*,1}(s) = \rho_1 h_{\gamma\gamma^*,1} t_{11}^* + \rho_2 h_{\gamma\gamma^*,2} t_{21}^*$$

$$\operatorname{Im} h_{\gamma\gamma^*,2}(s) = \rho_1 h_{\gamma\gamma^*,1} t_{12}^* + \rho_2 h_{\gamma\gamma^*,2} t_{22}^*$$

$$2 = KK$$

Entire dynamical information that does not depend on the underlying theory (e.g. QCD) comes from **unitarity**

Experimental data

 $\gamma\gamma \rightarrow \pi^{+}\pi^{-}$: Mark II ('90), CELLO ('92), Belle ('07) $\gamma\gamma \rightarrow \pi^{0}\pi^{0}$: Crystal Ball ('90), Belle ('09) $\gamma\gamma \rightarrow \pi^{0}\eta$: Crystal Ball ('86), Belle ('09) $\gamma\gamma \rightarrow \eta\eta$: Belle ('10) $\gamma\gamma \rightarrow KK$: ARGUS ('90), TASSO ('85), CELLO ('89), Belle ('13)

Dispersion relation

$$h(s) = \frac{1}{2\pi i} \int_C ds' \frac{h(s')}{s' - s} = \int_{-\infty}^0 \frac{ds'}{\pi} \frac{\operatorname{Im} h(s')}{s' - s} + \int_{4m_\pi^2}^\infty \frac{ds'}{\pi} \frac{\operatorname{Im} h(s')}{s' - s}$$

analyticity relates scattering amplitude at different energies

Dispersion relation

Left and right-hand cuts

Definite: J, λ_1, λ_2

$$h(s) = \int_{-\infty}^{0} \frac{ds'}{\pi} \frac{\operatorname{Im} h(s')}{s' - s} + \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Im} h(s')}{s' - s}$$

Looking for a solution in the form (N/D technique)

$$h(s) = h^{Born}(s) + \Omega(s) N(s)$$

$$s > 4m_{\pi}^{2}$$

Im $\Omega(s) = \Omega(s) \rho(s) t^{*}(s)$
Im $h(s) = h(s) \rho(s) t^{*}(s)$

Omnes (1958)

Dispersive integral for J=0

(2013)

$$h(s) = h^{Born}(s) + \Omega(s)\left(a + bs + \frac{s^2}{\pi}\int_{-\infty}^{+s_L} \frac{ds'}{s'^2} \frac{\operatorname{Im}(h(s'))\Omega^{-1}(s)}{s' - s} - \frac{s^2}{\pi}\int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{h^{Born}(s')\operatorname{Im}(\Omega^{-1}(s'))}{s' - s}\right)$$

see also Moussallam
(2013)
$$Q^2 - dependent$$

$$similar eq. for coupled-channel (TTT,KK)$$

Left-band cuts

Dispersive integral for J=0

Dispersive integral for J=0

$$h(s) = h^{Born}(s) + \Omega(s) \left(a + b \, s + \frac{s^2}{\pi} \int_{-\infty}^{-s_L} \frac{ds'}{s'^2} \frac{\operatorname{Im}(h^V(s'))\Omega^{-1}(s)}{s' - s} - \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{h^{Born}(s')\operatorname{Im}(\Omega^{-1}(s'))}{s' - s} \right)$$
el Omnes

Coupled channel Omnes

$$\Omega(s) = \begin{pmatrix} \Omega_{\pi\pi\to\pi\pi} & \Omega_{\pi\pi\to K\bar{K}} \\ \Omega_{K\bar{K}\to\pi\pi} & \Omega_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

Solve p.w. dispersion relation using N/D technique using model-independent form for the left-hand cuts

$$T(s) = U(s) + \frac{s}{\pi} \int_{R} \frac{ds'}{s'} \frac{\rho(s')|T(s')|^2}{s' - s}$$

$$\sum_{k} C_k \xi(s)^k \quad \text{conformal mapping expansion} \quad \begin{array}{c} \text{Chew, Mandelstam} \\ \text{Lutz, Gasparyan} \\ \text{Ck fitted to exp data and Roy eq. solutions} \end{array}$$

Coupled channel Omnes

$$\Omega(s) = \begin{pmatrix} \Omega_{\pi\pi\to\pi\pi} & \Omega_{\pi\pi\to K\bar{K}} \\ \Omega_{K\bar{K}\to\pi\pi} & \Omega_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

$f_2(1270)$ contribution

Watson theorem (for elastic unitarity) J=2: $\phi(\gamma\gamma \to \pi\pi) = \phi(\pi\pi \to \pi\pi) = \delta(\pi\pi \to \pi\pi)$ $\Omega(s) = \exp\left(\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'} \frac{\phi_{\gamma\gamma \to \pi\pi}(s)}{s' - s}\right)$ Roy analysis (2011) R. Garcia-Martin

When there are **no VM**, it is not possible to describe J=2 partial wave using Omnes functions and we parametrize it with the Breit Wigner + Background

$$h_{J=2}^{f_2} = \frac{C_{f_2 \to \gamma\gamma} C_{f_2 \to \pi\pi}}{10\sqrt{6}} \frac{s(s+Q^2)\beta(s)}{s-M^2 + i\,M\,\Gamma(s)} \,T_{f_2}^{(\Lambda=2)}(Q^2)$$

$$h_{J=2} = B_{D2} + h_{J=2}^{f_2} e^{i\phi_0} = |h_{J=2}|e^{i\delta(\pi\pi\to\pi\pi)}$$

Background: Born
Relative phase: unitarization

at.al.

Subtraction constants

Soft photon limit $(q_1=0)$

$$H_{\lambda_1 \lambda_2} \to H^{Born}_{\lambda_1 \lambda_2}$$
$$s = -Q^2, t = u = m_\pi^2$$

prediction for **b**: generalised polarizabilities

For space like photons: generalized polarizabilities

$$\pm \frac{2\alpha}{m_{\pi}} \frac{H_{\pm\pm}^{n}}{s+Q^{2}} = (\alpha_{1} \mp \beta_{1})_{\pi^{0}} + \dots$$
$$\pm \frac{2\alpha}{m_{\pi}} \frac{(H_{\pm\pm}^{c} - H_{\pm\pm}^{Born})}{s+Q^{2}} = (\alpha_{1} \mp \beta_{1})_{\pi^{+}} + \dots$$

more realistic l.h.cut: **fix b** from **ChPT** and **COMPASS**

No VM $(Q^2=0)$

No VM ($Q^2 = 0.5$)

Results with VM and fully dispersive f₂(1270) contribution are on their way

Ongoing experiment: BES III

 $ss \rightarrow \pi\eta (Q^2 = 0)$

$$\Omega(s) = \begin{pmatrix} \Omega_{\pi\eta\to\pi\eta} & \Omega_{\pi\eta\to K\bar{K}} \\ \Omega_{K\bar{K}\to\pi\eta} & \Omega_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

Danilkin, Gil, Lutz (2011)

Summary and Outlook

In light of the new Belle data (2015) for f₂(1270) TFFs and using LbL sum rules we predicted (A=2) TFF for f₂(1565)

• Update for meson contributions to (g-2) LbL

<u>Tensor mesons</u> contributions found to be small compared to anticipated exp. uncertainty 1.6*10⁻¹⁰

<u>Axial vector mesons</u> contributions (satisfying Landau-Yang theorem constraint) evaluated by 2 groups and found to be between $(0.64 - 0.75 \pm 0.27)10^{-10}$

Next steps?

Need to take into account $f_0(500)$ and non resonant contributions in a dispersive approach

 Main ingredients: γγ*→ππ, πη,... (work in progress). Can be used in different (g-2) dispersive approaches.

It is important to **validate** dispersive treatment of $\gamma\gamma^* \rightarrow \pi\pi$, $\pi\eta$,... with upcoming BES III data

Thank you!

Extra slides

Sum rules II and III

$$C=+1: \quad J^{PC}=0^{+}, 0^{++}, 1^{++}, 2^{++}, \dots$$

$$Q^{2} \neq 0 \qquad \text{Landau-Yang theorem}$$

$$\int_{s_{0}}^{\infty} ds \, \frac{1}{(s+Q_{1}^{2})^{2}} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_{1}^{2})}{Q_{1}Q_{2}} \tau_{TL}^{a}\right]_{Q_{2}^{2}=0}$$

$$\int_{s_{0}}^{\infty} ds \, \left[\frac{\tau_{TL}(s, Q_{1}^{2}, Q_{2}^{2})}{Q_{1}Q_{2}}\right]_{Q_{2}^{2}=0}$$

Axial-vector mesons I^{++} are **allowed** if one of the photons is virtual: interplay between \mathcal{A}, \mathcal{T}

Equivalent 2
$$\gamma$$
 width: $\tilde{\Gamma}_{\gamma\gamma}(\mathcal{A}) \equiv \lim_{Q_1^2 \to 0} \frac{m_{\mathcal{A}}^2}{Q_1^2} \frac{1}{2} \Gamma \left(\mathcal{A} \to \gamma_L^* \gamma_T \right)$

 s_0

TFFs $\gamma^*\gamma \rightarrow f_1(1285), f_1(1420)$ were measured

0

0

=

L3 Collaboration (2002), (2007)

Sum rules II and III $(Q^2 \approx 0)$

	m	$\Gamma_{\gamma\gamma}$	$\int ds \; \left[\tfrac{1}{s^2} \sigma_{\parallel} + \tfrac{1}{s} \tfrac{\tau^a_{TL}}{Q_1 Q_2} \right]_{Q^2_i = 0}$	$\int_{s_0}^{\infty} ds \left[rac{ au_{ ext{TL}}(s,Q_1^2,Q_2^2)}{Q_1 Q_2} ight]_{Q_1^2=0}$
	[MeV]	[keV]	$[nb / GeV^2]$	[nb]
$f_1(1285)$	1281.8 ± 0.6	3.5 ± 0.8	-93 ± 21	$+153 \pm 35$
$f_1(1420)$	1426.4 ± 0.9	3.2 ± 0.9	-50 ± 14	$+102 \pm 29$
$f_0(980)$	990 ± 20	0.31 ± 0.05	$+40\pm13$	$+19\pm10$
$f_2(1270)$	1275.5 ± 0.8	2.93 ± 0.40		
$\Lambda = 2$			$+122\pm17$	-
$\Lambda = (0,T)$			$+23\pm3$	-
$\Lambda = (0, L)$??	??
$\Lambda = 1$??	??
\mathbf{Sum}				
$f_2(1565)$	1562 ± 13	0.70 ± 0.14		
$\Lambda=2$			$+12\pm2$	-
Sum			≈ 0 (def.)	$\approx 0 \; (def.)$

Sum rules II and III ($Q^2 \approx 0$)

Sum rules II and III $(Q^2>0)$

Conformal mapping

Solve p.w. dispersion relation using N/D technique using model-independent form for the left-hand cuts

Example: I=2

Solve p.w. dispersion relation using N/D technique using model-independent form for the left-hand cuts

Anomalous magnetic moment of the muon

$$a_{\mu} = \frac{(g-2)_{\mu}}{2}$$

Anomalous magnetic moment of the muon

Jegerlehner et. al. (2015)

41

Anomalous magnetic moment of the muon

-	Total HLbL	[a _µ in units 10 ⁻¹¹]							
	Contribution	HKS	BPP	KN	MV	PdRV	N/JN	Jegerlehner	(2015)
	π^0, η, η'	82.7±6.4	85±13	83±12	114 ± 10	114±13	99±16		
	π, K loops	-4.5 ± 8.1	-19±13	-	0±10	-19±19	-19±13		
	axial vectors	1.7 ± 1.7	2.5±1.0	-	22±5	15 ± 10	22 ± 5	→ 7.5 ± 2.7	
	scalars	-	-6.8 ± 2.0	-	_	-7±7	-7 ± 2		
	quark loops	9.7±11.1	21±3	-	-	2.3	21 ± 3		
	total	89.6±15.4	83±32	80±40	136±25	105 ± 26	116±39	→ 102 ± 39	

Observables in experiment $e^+e^- \rightarrow e^-e^+X$

$$d\sigma = \frac{\alpha^2}{16\pi^4 Q_1^2 Q_2^2} \frac{2\sqrt{X}}{s(1-4m^2/s)} \cdot \frac{d^3 \vec{p}_1'}{E_1'} \cdot \frac{d^3 \vec{p}_2'}{E_2'} \times \left\{ 4\rho_1^{++} \rho_2^{++} \sigma_{TT} + \rho_1^{00} \rho_2^{00} \sigma_{LL} + 2\rho_1^{++} \rho_2^{00} \sigma_{TL} + 2\rho_1^{00} \rho_2^{++} \sigma_{LT} + 2\left(\rho_1^{++} - 1\right) \left(\rho_2^{++} - 1\right) \left(\cos 2\tilde{\phi}\right) \tau_{TT} + 8\left[\frac{\left(\rho_1^{00} + 1\right) \left(\rho_2^{00} + 1\right)}{\left(\rho_1^{++} - 1\right) \left(\rho_2^{++} - 1\right)}\right]^{1/2} \left(\cos \tilde{\phi}\right) \tau_{TL} + h_1 h_2 4 \left[\left(\rho_1^{00} + 1\right) \left(\rho_2^{00} + 1\right)\right]^{1/2} \tau_{TT}^a + h_1 h_2 8 \left[\left(\rho_1^{++} - 1\right) \left(\rho_2^{++} - 1\right)\right]^{1/2} \left(\cos \tilde{\phi}\right) \tau_{TL}^a\right\},$$