Hadronic contribution to $(g-2)_{\mu}$ from e^+e^- annihilations

Michel Davier, Andreas Hoecker, <u>Bogdan Malaescu</u>, Zhiqing Zhang

First workshop of the muon g-2 theory initiative - June 2017 -

Hadronic Vacuum Polarization and Muon $(g-2)_{\mu}$

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece Cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

 \rightarrow Precise $\sigma(e^+e^-\rightarrow hadrons)$ measurements at low energy are very important

B. Malaescu (CNRS)

– Fermilab g-2 workshop –

Outlook

- Data on $e^+e^- \rightarrow$ hadrons
- Combination of all e⁺e⁻ data (HVPTools)
- Results on a_{μ}
- Discussion and conclusions

HVP: Low-energy data on e⁺e[−]→hadrons

Need: $e^+e^- \rightarrow$ hadrons bare (no VP) cross section

 \rightarrow in addition to the dominant $\pi\pi$ channel, need to account for KK, $\pi^0\gamma$, $\eta\gamma$

- + channels with higher multiplicities
- \rightarrow need to combine measurements in each channel & sum channels
- \rightarrow Do not use hadronic τ decays data (less precise + theory uncertainties)

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (2011)

arXiv: 1010.4180 (EPJ C) Davier-Hoecker-BM-Zhang

Improved procedure and software (HVPTools) for combining cross section data with arbitrary point spacing/binning

Combine Cross Section Data: goal and requirements

- \rightarrow Goal: combine experimental spectra with arbitrary point spacing / binning
- \rightarrow Requirements:
- Properly propagate uncertainties and correlations
- Between measurements (data points/bins) of a given experiment (covariance matrices and/or detailed split of uncertainties in sub-components)
- Between experiments (common systematic uncertainties, e.g. VP) based on detailed information provided in publications
- Between different channels motivated by understanding of the meaning of systematic uncertainties and identifying the common ones:
- BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling); BABAR radiative corrections; $4\pi 2\pi^0 - \eta \omega$
- CMD2 $\eta\gamma \pi^0\gamma$; CMD2/3 luminosity; SND luminosity;
- FSR; hadronic VP (old experiments)
- Minimize biases
- Optimize g-2 integral uncertainty

Combination procedure implemented in HVPTools software

- \rightarrow Define a (fine) final binning (to be filled and used for integrals etc.)
- → Linear/quadratic splines to interpolate between the points/bins of each experiment
 - for binned measurements: preserve integral inside each bin
- → Fluctuate data points taking into account correlations and re-do the splines for each (pseudo-)experiment
 - each uncertainty fluctuated coherently for all the points/bins that it impacts
 - eigenvector decomposition for (statistical) covariance matrices

Combination procedure implemented in HVPTools software

For each final bin:

- \rightarrow Compute an average value for each measurement and its uncertainty
- \rightarrow Compute correlation matrix between experiments
- \rightarrow Minimize χ^2 and get average coefficients
- \rightarrow Compute average between experiments and its uncertainty
- Evaluation of integrals and propagation of uncertainties:
- → Integral(s) evaluated for nominal result and for each set of toy pseudoexperiments; uncertainty of integrals from RMS of results for all toys
- → Uncertainties also propagated through ±1σ shifts of each uncertainty:
 allows to account for correlations between different channels (for integrals and spectra)
- \rightarrow Checked consistency between the two approaches, for a given channel

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements (do not over-estimate the weight of experiments with large bins) \rightarrow weights in fine bins evaluated using a common (large) binning for measurements + interpolation \rightarrow compare the precisions on the same footing

Combination procedure: compatibility between measurements

For each final bin:

 $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements \rightarrow Conservatively scale uncertainties in bins where χ^2 /ndof > 1 (PDG)

 \rightarrow Observed tension between BABAR and KLOE measurements

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

B. Malaescu (CNRS)

- Fermilab g-2 workshop -

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

B. Malaescu (CNRS)

– Fermilab g-2 workshop –

$a_{\mu}^{\pi\pi}$ contribution

 \rightarrow Closure test of the combination method:

- replace all central values of the measured cross sections by predictions from of a Gounaris-Sakurai model (keeping uncertainties unchanged)
- perform combination and integration procedure
- compare integration result with expectation from integral of the model
- \rightarrow Bias ~ 0.1·10⁻¹⁰ when using linear interpolation
- \rightarrow Negligible bias for quadratic interpolation

 \rightarrow Updated result:

 $507.0 \pm 1.1 \text{ (stat.)} \pm 2.2 \text{ (uncorrelated syst.)} \pm 0.8 \text{ (correlated syst.)} [10^{-10}]$ (after uncertainty enhancement by 14% caused by the tension between inputs)

Total uncertainty: $5.9 (2003) \rightarrow 2.8 (2011) \rightarrow 2.6 (2017)$

Combination for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel

Combination for the $e^+e^- \rightarrow K^+K^-$, K_sK_l channels

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-, e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

→ Essentially normalization differences w.r.t. τ data: cross-checks very desirable

Combination for the $e^+e^- \rightarrow KK\pi$ and $KK2\pi$ channels

B. Malaescu (CNRS)

– Fermilab g-2 workshop –

Contributions from the 1.8 - 3.7 GeV region

 \rightarrow Contribution evaluated from pQCD (4 loops) + O(α_s^2) quark mass corrections

- \rightarrow Uncertainties: α_s , truncation of perturbative series, CIPT/FOPT, m
- \rightarrow 1.8-2.0 GeV: 7.71±0.37(data); 8.30±0.09(QCD); added syst. 0.59 [10⁻¹⁰]
- \rightarrow 2.0-3.7 GeV: 25.82±0.61(data); 25.15 ± 0.19(QCD); agreement within 1 σ

Contributions from the charm resonance region

 \rightarrow Hadrons

R

e+e-

a_u contributions and sum

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$
$\pi^0\gamma$	$4.29\pm 0.06\pm 0.04\pm 0.07$
ηγ	$0.65\pm 0.02\pm 0.01\pm 0.01$
$\pi^{+}\pi^{-}$	$506.97 \pm 1.10 \pm 2.18 \pm 0.75$
$\pi^{+}\pi^{-}\pi^{0}$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$
$\pi^{+}\pi^{-}2\pi^{0}$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$
$\pi^+\pi^-3\pi^0$ (η excl., isospin)	$0.35\pm 0.02\pm 0.03\pm 0.01$
$3\pi^+3\pi^-$	$0.11\pm 0.00\pm 0.01\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0$ (η excl.)	$0.72\pm 0.06\pm 0.07\pm 0.14$
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.11\pm 0.01\pm 0.11\pm 0.00$
$\eta \pi^+ \pi^-$	$1.18\pm 0.03\pm 0.06\pm 0.02$
ηω	$0.30 \pm 0.03 \pm 0.03 \pm 0.01$
$\eta \pi^+ \pi^- \pi^0 \pmod{\omega}$	$0.14 \pm 0.01 \pm 0.16 \pm 0.03$
$\eta 2\pi^{+}2\pi^{-}$	$0.02\pm 0.01\pm 0.00\pm 0.00$
$\eta \pi^{+} \pi^{-} 2 \pi^{0}$	$0.02\pm 0.01\pm 0.01\pm 0.00$
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.02 \pm 0.02$
$\omega(\pi\pi)^0 \ (\omega \to \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$
$\omega (\text{non-}3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$
$K^{+}K^{-}$	$22.81 \pm 0.24 \pm 0.28 \pm 0.17$
$K_S K_L$	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$
$\phi (\text{non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$
$K\overline{K}\pi$	$2.45 \pm 0.06 \pm 0.12 \pm 0.07$
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$
$K\overline{K}3\pi$ (estimate)	$-0.03\pm0.01\pm0.02\pm0.00$
$\eta \phi$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$
$\eta K \overline{K} \pmod{\phi}$	$0.01\pm 0.01\pm 0.01\pm 0.00$
$\omega K\overline{K} \ (\omega \to \pi^0 \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega \eta \pi^0$	$0.06 \pm 0.04 \pm 0.00 \pm 0.00$

J/ψ (BW integral) $\psi(2S)$ (BW integral)	6.28 ± 0.07 1.57 ± 0.03	
$R_{\rm data}$ [3.7–5.0 GeV]	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	
RQCD [1.8-3.7 GeV] _{uds}	$33.45 \pm 0.28 \pm 0.59_{\rm dual}$	
RQCD [5.0-9.3 GeV]udsc	6.86 ± 0.04	
R _{QCD} [9.3-12.0 GeV] _{udscb}	1.21 ± 0.01	
RQCD [12.0-40.0 GeV]udscb	1.64 ± 0.00	
R_{QCD} [> 40.0 GeV] _{udscb}	0.16 ± 0.00	
$R_{\rm QCD}$ [> 40.0 GeV] _t	0.00 ± 0.00	
Sum	$692.7 \pm 1.2 \pm 2.6 \pm 1.7 \pm 0.1_{\psi} \pm 0.7_{\rm QCD}$	

→ Included 39 channels (22 in previous update)

 \rightarrow Precision improved by 21%

 \rightarrow Only 0.10 ± 0.03% in missing (estimated) channels

– Fermilab g-2 workshop –

Status of a_{μ}

• Including latest results on $e+e- \rightarrow$ hadrons in the combination + latest QED calculation (Kinoshita et al.) yields

 $a_{\mu}^{SM}[e+e-] = (11\ 659\ 181.8\ \pm 3.4\ \pm 2.6\ \pm 0.2)\ 10^{-10}$

• E-821 updated result

B. Malaescu (CNRS)

• Deviation $(27.3 \pm 7.6) \ 10^{-10}$ (3.6 σ)

Conclusion

- \rightarrow Long standing discrepancy (~3 σ) between data and SM on a_{μ}
- \rightarrow The evaluation of the HVP contribution to a_{μ}^{SM} is a continuous effort, following the release of new experimental data
- \rightarrow Precision on $a_{\mu}^{Had,LO}$ improved by more than a factor 2 in the last 14 years
- \rightarrow Uncertainty of similar size for a_{μ}^{LBL} , based on hadronic models Lattice QCD may provide the way forward
- \rightarrow Looking forward to the improved experimental result at Fermilab

Backup Slides

Situation in arXiv:1010.4180 (EPJC)

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$	$\Delta \alpha_{\rm had} (M_Z^2) \ [10^{-4}]$
$\pi^0\gamma$	$4.42\pm 0.08\pm 0.13\pm 0.12$	$0.36\pm 0.01\pm 0.01\pm 0.01$
$\eta\gamma$	$0.64 \pm 0.02 \pm 0.01 \pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$
$\pi^{+}\pi^{-}$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$	$34.43 \pm 0.07 \pm 0.17 \pm 0.04$
$\pi^{+}\pi^{-}\pi^{0}$	$46.00 \pm 0.42 \pm 1.03 \pm 0.98$	$4.58\pm 0.04\pm 0.11\pm 0.09$
$2\pi^{+}2\pi^{-}$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$	$3.49 \pm 0.03 \pm 0.12 \pm 0.08$
$\pi^{+}\pi^{-}2\pi^{0}$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$	$4.43 \pm 0.03 \pm 0.29 \pm 0.10$
$2\pi^+2\pi^-\pi^0$ (η excl.)	$0.72\pm 0.04\pm 0.07\pm 0.03$	$0.22\pm 0.01\pm 0.02\pm 0.01$
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36 \pm 0.02 \pm 0.03 \pm 0.01$	$0.11\pm 0.01\pm 0.01\pm 0.00$
$3\pi^{+}3\pi^{-}$	$0.12\pm 0.01\pm 0.01\pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.70 \pm 0.05 \pm 0.04 \pm 0.09$	$0.25\pm 0.02\pm 0.02\pm 0.03$
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11\pm 0.01\pm 0.11\pm 0.00$	$0.04\pm 0.00\pm 0.04\pm 0.00$
$\eta \pi^+ \pi^-$	$1.15\pm 0.06\pm 0.08\pm 0.03$	$0.33 \pm 0.02 \pm 0.02 \pm 0.01$
$\eta\omega$	$0.47 \pm 0.04 \pm 0.00 \pm 0.05$	$0.15\pm 0.01\pm 0.00\pm 0.02$
$\eta 2\pi^{+}2\pi^{-}$	$0.02\pm 0.01\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\eta \pi^+ \pi^- 2 \pi^0$ (estimated)	$0.02\pm 0.01\pm 0.01\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$	$0.18\pm 0.00\pm 0.02\pm 0.00$
$\omega \pi^+ \pi^-, \omega 2 \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$
$\omega (\text{non-}3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$
K^+K^-	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$	$3.13\pm 0.04\pm 0.08\pm 0.05$
$K^0_S K^0_L$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$	$1.75\pm 0.02\pm 0.03\pm 0.03$
$\phi \text{ (non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm0.00\pm0.00\pm0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$K\overline{K}\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$	$0.76 \pm 0.02 \pm 0.04 \pm 0.02$
$K\overline{K}2\pi$ (partly from isospin)	$1.35 \pm 0.09 \pm 0.38 \pm 0.03$	$0.48\pm 0.03\pm 0.14\pm 0.01$
$K\overline{K}3\pi$ (partly from isospin)	$-0.03\pm0.01\pm0.02\pm0.00$	$-0.01\pm0.00\pm0.01\pm0.00$
$\phi\eta$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$	$0.13\pm 0.01\pm 0.01\pm 0.00$
$\omega K\overline{K} \ (\omega \to \pi^0 \gamma)$	$0.00\pm 0.00\pm 0.00\pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$
J/ψ (Breit-Wigner integral)	6.22 ± 0.16	7.03 ± 0.18
$\psi(2S)$ (Breit-Wigner integral)	1.57 ± 0.03	2.50 ± 0.04
$R_{\rm data}$ [3.7 – 5.0 GeV]	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79\pm0.12\pm0.66\pm0.00$
$R_{\rm QCD} \ [1.8 - 3.7 \text{ GeV}]_{uds}$	33.45 ± 0.28	24.27 ± 0.19
$R_{\rm QCD} \ [5.0 - 9.3 \text{ GeV}]_{udsc}$	6.86 ± 0.04	34.89 ± 0.18
$R_{\rm QCD} \ [9.3 - 12.0 \ {\rm GeV}]_{udscb}$	1.21 ± 0.01	15.56 ± 0.04
$R_{\rm QCD} \ [12.0 - 40.0 \ {\rm GeV}]_{udscb}$	1.64 ± 0.01	77.94 ± 0.12
$R_{\rm QCD} \ [> 40.0 \ {\rm GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.06
$R_{\rm QCD}~[>40.0~{ m GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01
Sum	$692.3 \pm 1.4 \pm 3.1 \pm 2.4 \pm 0.2_{\psi} \pm 0.3_{\rm QCD}$	$274.97 \pm 0.17 \pm 0.78 \pm 0.37 \pm 0.18_{\psi} \pm 0.52_{\rm QCD}$

Lepton Magnetic Anomaly: from Dirac to QED

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad \qquad a = (g-2)/2$$

Dirac (1928) $g_e=2 a_e=0$

anomaly discovered: Kusch-Foley (1948) $a_e = (1.19 \pm 0.05) 10^{-3}$

and explained by O(α) QED contribution: Schwinger (1948) $a_e = \alpha/2\pi = 1.16 \ 10^{-3}$

first triumph of QED

 \Rightarrow a_e sensitive to quantum fluctuations of fields

More Quantum Fluctuations

$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}} + ? \text{ a new physics } ?$$
typical contributions:
QED up to O(α^{5}) (Kinoshita et al.)
Hadrons
vacuum polarization
Hadrons
light-by-light (models)
 π^{0}, η, η'
 q_{1}
 q_{2}
Rectroweak
 W
 μ
 μ
 ν_{μ}
 V
 ν_{μ}
 $\delta a_{l} \propto \frac{m_{l^{2}}}{M^{2}} \Rightarrow a_{\mu}$ much more sensitive to high scales

HVP: Data on $e^+e^- \rightarrow$ hadrons

BaBar results (arXiv:0908.3589, PRL 103, 231801 (2009); arXiv:1205.2228)

