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Blum et al, 
1301.2607

Standard Model theory expectations for muon anomalous 
magnetic moment 
Contributions 
from QED, 
EW and QCD 
interactions. 
QED 
dominates.  
QCD contribs  
start at 

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.
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Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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LO Hadronic vacuum polarisation (HVP) 
dominates uncertainty in SM result↵2

QED

aQED
µ = 11658471.885(4)⇥ 10�10

↵QED

2⇡
= 0.00116

aEW
µ = 15.4(2)⇥ 10�10

aE821
µ = 11659208.9(6.3)⇥ 10�10

aµ = (g � 2)/2



aexpt
µ

� aQED

µ

� aEW

µ

= 721.7(6.3)⇥ 10�10

= aHV P
µ + aHOHV P

µ + aHLBL
µ + anew physics

µ

Hadronic (and other) contributions = EXPT - QED - EW

Focus on lowest order hadronic vacuum polarisation,  
so assume: 

aHLbL
µ = 10.5(2.6)⇥ 10�10

aHOHV P
µ = �8.85(9)⇥ 10�10 NLO+NNLO

aHV P,no new physics
µ = 719.8(6.8)⇥ 10�10

Kurz et al, 
1403.6400



Lattice calculation of HVP,LO

µ

q

q

Analytically continue to Euclidean q2.

aHV P,i
µ =

↵

⇡

Z 1

0
dq2f(q2)(4⇡↵e2i )⇧̂i(q

2)

Blum, hep-lat/
0212018connected contribution for flavour i

f(q2) divergent function with scale set by  mµ

⇧̂(q2) = ⇧(q2)�⇧(0)

HPQCD method: time-moments of spatial vector 
JJ correlators give expansion around q2=0

G

n

⌘
X

t,~x

t

n

Z

2
V

hJj(~x, t)Jj(0)i ⇧̂(q2) =
1X

k=1

qk⇧k

⇧k = (�1)k+1 G2k+2

(2k + 2)!

J J

HPQCD, 1403.1778

replace with 
[2,2] Padé

vanishes at q2=0

n = 4, 6, 8, 10



Parameters for MILC gluon field configs on 
which quark propagators and hadron 
correlators are calculated

real 
world

mass of u,d 
quarks

Volume:

mu,d ⇡ ms/10

mu,d ⇡ ms/27

“2nd generation” 
lattices inc. c 
quarks in sea

m⇡L > 3

HISQ = Highly 
improved 
staggered quarks -
very accurate 
discretisation and 
numerically fast

135 MeV
m⇡0 =

E.Follana, et al, 
HPQCD, hep-lat/
0610092.

mu = md

= ml
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Hadron correlation functions (‘2point functions’) contain 
multiple states with decaying exponentials. Large times 
controlled by lightest masses. 

h0|H†(T )H(0)|0i =
X

n

Ane
�mnT

masses of all 
hadrons with 
quantum 
numbers of H

|h0|H|ni|2

2mn

decay constant param. amplitude to 
annihilate. Relate to experimental 
decay rate (          for vector 
mesons) . Provides ‘large time’ test 
of correlators used

QCD HH

=
f2
nmn

2
An =

large
! A0e

�m0T
T

�`+`�

~p = 0

Need to fix QCD parameters: lattice spacing and quark masses
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Meson decay constants 
Parameterises hadronic information needed 
for annihilation rate to W or photon: � / f2

 2012
B ! ⇥�

1503.05762, 1408.5768,1302.2644, 1303.1670

decay constants of 
vector mesons now 
being pinned down 

0.5% accuracy from lattice QCD 
now : FNAL/MILC 1407.3772 
BES will improve expt. 

0.2% accurate
Vus

Vub VcsVcd

2% accurate
B(s) ! µ=µ�

***
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Set mca
⇣

GV
4

Z2a2

⌘1/2 ⇣
GV

6
Z2a4

⌘1/4 ⇣
GV

8
Z2a6

⌘1/6 ⇣
GV

10
Z2a8

⌘1/8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)
2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)
2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)
3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)
4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)
5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)
6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)

TABLE IV: Results in lattice units for time moments of the
J/⇤ correlator as defined in eq. (10). We give results for n=4,
6, 8 and 10.

(GV
4 )1/2 (GV

6 )1/4 (GV
8 )1/6 (GV

10)
1/8

(amc)
2 extrapolation 0.18 0.18 0.16 0.16

statistics 0.05 0.04 0.03 0.03
lattice spacing 0.32 0.51 0.43 0.30
sea quark extrapolation 0.14 0.13 0.12 0.12
M�c tuning 0.15 0.18 0.17 0.16
Z 1.23 0.61 0.41 0.31
electromagnetism 0.3 0.2 0.1 0.05
Total (%) 1.3 0.9 0.7 0.5

TABLE V: Complete error budget for the time moments of
the J/⇤ correlator as a percentage of the final answer.

Re+e� = ⌃(e+e� � hadrons)/⌃pt [22, 23]. The values,
extracted from experiment by [22] and appropriately nor-
malised for the comparison to ours, are:

(M exp
1 4!/(12⇧2e2c))

1/2 = 0.3142(22)GeV�1

(M exp
2 6!/(12⇧2e2c))

1/4 = 0.6727(30)GeV�1

(M exp
3 8!/(12⇧2e2c))

1/6 = 1.0008(34)GeV�1

(M exp
4 10!/(12⇧2e2c))

1/8 = 1.3088(35)GeV�1. (12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. �(J/⇤ � �⇥c)

The radiative decay of the J/⌥ meson to the ⌅c re-
quires the emission of a photon from either the charm
quark or antiquark and a spin-flip, so it is an M1 transi-
tion. Because it is sensitive to relativistic corrections this
rate is hard to predict in nonrelativistic e⇥ective theories
and potential models (see, for example, [24, 25]) Here
we use a fully relativistic method in lattice QCD with
a nonperturbatively determined current renormalisation
and so none of these issues apply. In addition, of course,
the lattice QCD result is free from model-dependence.
The quantity that parameterises the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor, V (q2), where q2

is the square of the 4-momentum transfer from J/⌥ to
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FIG. 4: Results for the 4th, 6th, 8th and 10th time moments
of the charmonium vector correlator shown as blue points and
plotted as a function of lattice spacing. The errors shown (the
same size or smaller than the points) include (and are domi-
nated by) uncertainties from the determination of the current
renormalization factor, Z, that are correlated between the
points. The data points have been corrected for c quark mass
mistuning and sea quark mass e⇥ects, but the corrections are
smaller than the error bars (the value for the deliberately
mistuned c mass on set 2 is not shown). The blue dashed
line with grey error band displays our continuum/chiral fit.
Experimental results determined from Re+e� (eq. (12)) are
plotted as the black points at the origin o⇥set slightly from
the y-axis for clarity.

⌅c. The form factor is related to the matrix element of
the vector current between the two mesons by:

⇥⌅c(p⇥)|c⇥µc|J/⌥(p)⇤ = 2V (q2)

(MJ/⌃ +M⌅c)
�µ�⇥⇤p⇥�p⇥⇤J/⌃,⇤

(13)
Note that the right-hand-side vanishes unless all the vec-
tors are in di⇥erent directions. Here we use a normalisa-
tion for V (q2) appropriate to a lattice QCD calculation
in which the vector current is inserted in one c quark line
only and the quark electric charge (2e/3) is taken as a
separate factor. The decay rate is then given by [8]:

�(J/⌥ � ⌅c⇥) = �QED
64|q|3

27(M⌅c +MJ/⌃)2
|V (0)|2, (14)

where it is the form factor at q2 = 0 that contributes be-
cause the real photon is massless. |q| is the corresponding
momentum of the ⌅c in the J/⌥ rest-frame.

Charm contribution to 

V V

Subtract u,d,s with pert. th. to 
isolate charm contribution.  
Calculate inverse-s-moment:

Mn �
Z

ds

sn+1
Rc(s)

Lattice calcln:

‘expt’ 

Donald et al, HPQCD,
1208.2855

 from J. Kuhn et al, 
hep-ph/0702103

Mn =
X

t

tnG(t)

Agree to 
1.5% c

J/ψ ψ ,
▲  BES (2001)
❍  MD-1
▼  CLEO
■  BES (2006)pQCD
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition

6

R = �(e+e� ! hadrons)/�pt

Testing correlator time-moments

gives mc
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⇥
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Use time-moments for first calc. of 
connected s quark contribution to 

Chakraborty et al, 
HPQCD 1403.1778

HISQ valence quarks on 
MILC 2+1+1 HISQ 
configs, 9 ensembles. 
Local Jv - nonpert. Zv.
multiple a (fixed by w0), 
ml (inc. phys.), volumes. 
Tune s from ⌘s

aHV P,c
µ = 14.4(4)⇥ 10�10

Also

aHV P,b
µ = 0.27(4)⇥ 10�10

NRQCDHPQCD 1408.5768

aµ

5

TABLE II: Columns 2-5 give the Taylor coe�cients ⇧j (Eq. 6), in units of 1/GeV2j , for each of the lattice data sets in Table I.
The errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0, which dominates.
Estimates of the connected contribution from s-quarks to aµ,HVP are given for each of the [1, 0], [1, 1], [2, 1] and [2, 2] Padé
approximants in columns 6-9; results are multiplied by 1010.

Set ⇧1 ⇧2 ⇧3 ⇧4 [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

1 0.06598(76) �0.0516(11) 0.0450(15) �0.0403(19) 58.11(67) 53.80(59) 53.95(59) 53.90(59)
2 0.06648(75) �0.0523(11) 0.0458(15) �0.0408(18) 58.55(66) 54.19(58) 54.33(59) 54.29(59)
3 0.06618(75) �0.0523(11) 0.0466(15) �0.0425(20) 58.28(66) 53.93(58) 54.09(58) 54.04(58)
4 0.06614(74) �0.0523(11) 0.0467(15) �0.0427(19) 58.25(65) 53.90(57) 54.06(58) 54.01(57)
5 0.06626(74) �0.0527(11) 0.0473(15) �0.0438(19) 58.36(65) 53.99(57) 54.15(57) 54.10(57)
6 0.06829(77) �0.0557(12) 0.0514(17) �0.0490(22) 60.14(67) 55.55(59) 55.73(59) 55.67(59)
7 0.06619(74) �0.0524(11) 0.0468(15) �0.0430(19) 58.29(65) 53.93(57) 54.10(57) 54.05(57)
8 0.06625(74) �0.0526(11) 0.0470(15) �0.0429(19) 58.34(65) 53.98(57) 54.14(57) 54.09(57)
9 0.06616(77) �0.0531(12) 0.0483(17) �0.0450(22) 58.27(68) 53.87(59) 54.04(60) 53.99(59)
10 0.06630(72) �0.0534(11) 0.0487(16) �0.0458(20) 58.39(64) 53.98(56) 54.15(56) 54.10(56)

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

a

s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 0.4% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.4% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 0.7% 2.7%

mistuning of the sea and valence light-quark bare masses:

�xsea ⌘
X

q=u,d,s

m

sea
q

� m

phys
q

m

phys
s

(10)

�x

s

⌘ m

val
s

� m

phys
s

m

phys
s

. (11)

For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a

2
µ

, c

a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (12)

Our final result for the connected contribution for
s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (13)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.

FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

The error budget for our result is given in Table III.
The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-

*update*

aHV P,s
µ = 53.4(4)⇥ 10�10

allowing for missing QED



Later results from other formalisms provide good check

Figure 4: Example continuum and strange quark mass extrapolations. Here �m
s

denotes

the relative error in the strange quark mass as compared to the physical value. In the

continuum limit plot we have subtracted out the variation in the values of a(2)had,s
µ

resulting

from the strange quark mass variation, and vice versa.

lattice momenta used in the integration kernel f . In order to account for potential non-

Gaussianity, this was sampled from the global fits jackknife samples used in [34]. We

found that the inclusion of the lattice spacing error increased the error in the final value

of a(2)had,s
µ

significantly, since the peak in the integrand (see figure 3 for example) depends

strongly on the muon mass.

In addition, for Z
V

we drew random samples from a Gaussian distribution for each

bootstrap sample. Since the statistical error on Z
V

is small (0.04% for the 48I ensemble and

0.02% on the 64I ensemble), we assume the original data set follows a Gaussian distribution.

3.4.2 Systematic error estimation

We use a variety of analysis techniques in order to determine the systematic error in the

value of a(2)had,s
µ

arising from the choice of a particular technique. Although di↵erent in

some aspects, this method is motivated by the frequentist approach developed in [41].

We initially selected three Padé approximants and six conformal polynomials to give

us nine di↵erent HVP parametrisations:

• P 0.5GeV

2

, P 0.6GeV

2

and R
0,1

, which contain three parameters;

• P 0.5GeV

3

, P 0.6GeV

3

and R
1,1

, which contain four parameters;

• P 0.5GeV

4

, P 0.6GeV

4

and R
1,2

, which contain five parameters.

We picked energy thresholds of 0.5 and 0.6 GeV for the chosen conformal polynomials as

we believed these to be below the two particle energy threshold, and we wished to study

the e↵ect of the variation of this quantity on the final value of a(2)had,s
µ

.
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RBC/UKQCD domain wall

aHV P,s
µ = 53.1(9)⇥ 10�10
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aHV P,s
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µ = 14.2(6)⇥ 10�10



UP/DOWN contribution
Much noisier and sensitive to u/d mass. Use ~16,000 2x2 
matrix of correlators per ensemble (10 ensembles). 

New Issues for 1% Precision for u/d case

• Correlators much noisier: Use data-fit hybrid correlator to 
control noise at large t:  
 
 

for t* = 1.5fm  (=            so 70% result from Gdata)
 (same results to within ±σ/4 with 0.75fm).

G(t) =

®
Gd�t�(t) for t  t�

Gfit(t) for t > t� from multi-exponential fit

from Monte Carlo

6/m⇢

• 80% of light quark vacuum polarization contribution is from 
the ρ meson pole ⇒ finite-volume error (from coupling to      ) 

in ρ mass and decay constant have significant impact on g-2. 
Need to understand        thoroughly on lattice. 

⇡⇡

• ππ loop contribution is about 10% of total and highly 
sensitive to mπ (contribution roughly proportional  
to 1/mπ2) and finite volume. For staggered quarks introduces 
extra discretisation artefacts from different taste     mesons.  ⇡

⇢

mu = md
Chakraborty et al, 
HPQCD 1601.03071
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t = t⇤

Gfit

a=0.12fm, ml physt⇤ = 1.5fm = 6/m⇢

so 80% of result from Gdata
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m

⇢
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]

FIG. 6: Results for the ⇢ meson mass (upper plot) and de-
cay constant (lower plot) from the vector correlators used to
determine the u/d connected contribution to aHVP,LO

µ . Re-
sults are shown for di↵erent u/d masses, as indicated by the
corresponding values of m2

⇡ (the lightest being the physical
value). Data come from simulations with lattice spacings of
0.15 fm (purple triangles), 0.12 fm (blue circles), and 0.09 fm
(red squares). Experimental results for the mass (dashed line)
and decay constant (gray band) are shown as well. A com-
parison of our results with those of [11, 13] is given in [48].

obtain our values for m⇢ and f⇢) by an amount commen-
surate with its numerical cost.

As discussed in the main text, we use a combination
of data and fit results when computing moments of the
local current-current correlator G ⌘ Gloc,loc:
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with the best-fit values for the parameters. Gfit is the
same as Gloc,loc from Eq. (A2) but with T ! 1, thereby
correcting for the finite temporal extent of the lattice.
Note that about 80% of our final result for aµ comes

from t  t

⇤ (=1.5 fm), where we use simulation data
rather than our fit.

The sum over states in Gfit (above) includes vector
mesons like the ⇢ and also multi-hadron states, which
enter as discrete energy eigenstates because of the fi-
nite spatial volume of our lattice. The lowest-energy
states are ⇡⇡ states for configurations with physical pion
masses, but we see no evidence of these in our fits — the
dominant contribution comes from the ⇢ meson. This
is expected because there are only a few ⇡⇡ states be-
low the ⇢ mass, and their contribution is suppressed by
a factor of one over the lattice volume (see Eq. (B32) be-
low), making their contributions to aµ smaller than our
statistical errors. Note that it has been possible to see
coupled ⇢ and ⇡⇡ states in lattice QCD calculations (see,
for example, [49]) but to do so requires careful meson
and multi-meson operator optimization to achieve mea-
surable overlaps; the calculations do not use the local
vector current that is relevant here.

The contribution of the low-energy ⇡⇡ states coming
from t  t

⇤ is included in our calculation, since we use
the Monte Carlo results in that region. The contribution
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�aµ ⌘ aµ(t⇤ = 0.5) � aµ(t⇤ = 1.5) (A7)
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omitting these states from Gfit. Redoing our full anal-
ysis for t

⇤ = 0.5 fm, we find that �aµ = 0 ± 3 ⇥ 10�10,
which is consistent with our direct estimate from chiral
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An important check on the quality of our correlators
and fit is that the ⇢ mass and decay constant agree with
experiment when the light quarks have their physical val-
ues. This is illustrated by Figure 6, which shows the mass
and decay constants from each of our configuration sets.
Theory and experiment agree to within errors for physi-
cal quark masses.2
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The definition of f⇢ is complicated by the large width of the ⇢ me-

son. Applying naive definitions gives results around 0.208 GeV

from ⌧ decay and around 0.220 GeV from ⇢ ! ee, with errors

of order a couple percent in each case. A more careful analysis,

which models non-resonant backgrounds in each case, is needed

to resolve the di↵erences between these two channels. We take

the experimental value to be f⇢ = 0.21(1) GeV for Figure 6.
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µ . Re-
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⇡ (the lightest being the physical
value). Data come from simulations with lattice spacings of
0.15 fm (purple triangles), 0.12 fm (blue circles), and 0.09 fm
(red squares). Experimental results for the mass (dashed line)
and decay constant (gray band) are shown as well. A com-
parison of our results with those of [11, 13] is given in [48].
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FIG. 7: Leading diagrams from chiral perturbation theory
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FIG. 8: Leading diagrams from the ⇢ e↵ective field theory
that correspond (to leading order in q2/m2

⇢) to the diagrams in
Fig. 7 from the standard chiral theory: a) leading-order ⇡+⇡�

vacuum polarization; b) correction for the pion’s charge radius
from � ! ⇢ ! ⇡⇡; c) correction for ⇡⇡ scattering correction
from ⇡⇡ ! ⇢ ! ⇡⇡. Dashed and solid lines represent pions
and rhos, respectively.

obtained from the configuration set (Table I), and then
we subtract from it the same quantity but with

⌃̂(�q

2
E , m⇡, m⇡) ! 1

16

X

⇠
a

,⇠
b

⌃̂V (�q

2
E , m⇡(⇠a), m⇡(⇠b))

(B34)
where ⌃̂V is evaluated for the finite volume of the con-
figuration (Eq. (B32)), and averaged over the staggered-
pion taste combinations ⇠a � ⇠b listed above. The correc-
tions �⇧j are the Taylor coe�cients of this di↵erence be-
tween continuum and finite-volume/staggered-pion vac-
uum polarizations.

The contribution to aµ from the first term in Eq. (B33)
is roughly five times larger than that from the second
term, and has the opposite sign. This is for our simula-
tion results with physical pion masses and the interme-
diate lattice spacing (set 8). The largest contributions
come mainly from the terms
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in Eq. (B33) (Figs. 8a and 8b), where r⇡ is the charge
radius of the pion. They contribute corrections to aµ

of 50 ⇥ 10�10 and �13 ⇥ 10�10, respectively. Further
(q2

/m

2
⇢)

n corrections to the �-⇡⇡ vertex contribute 3 ⇥
10�10. The other q

2
E/m

2
⇢ correction in Eq. (B33) is from

⇡⇡ scattering (Fig. 8c):
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This should be small because it is second order in
g⇢g⇢⇡⇡⌃̂; in fact, it contributes less than 0.5 ⇥ 10�10.
The total correction from all contributions (to all orders)
is 41 ⇥ 10�10 for set 8 —chiral perturbation theory con-
verges relatively rapidly here.

We add an extra 10% uncertainty to each correc-
tion �⇧j to account for missing contributions suppressed
by ms/⇤, due to tadpole and other renormalizations of

FIG. 9: Contributions to the hadronic vacuum polariza-
tion ⇧̂(q2) at q2 = �m2

µ coming from individual Taylor coef-
ficients ⇧n with n = 1 . . . 5. Results are show for corrected
(above) and uncorrected (“raw”, below) coe�cients coming
from our lattice QCD simulations with physical sea-quark
masses (sets 3 and 8). The corrected coe�cents include both
corrections described in Section II B: 1) adding �⇧n from
Table IV; and 2) replacing the pion mass from the simula-
tion with the physical pion mass in the leading ⇡⇡ loop. To
compare with experiment, we add contributions from s and
c quarks [14] to both the raw and corrected moments, neglect-
ing their contribution to the n = 5 moment (which is negli-
gible). The dashed lines are results derived from e+e� data:
see the “data direct” column in Table I of [56]. The error
estimates on the lattice results do not include contributions
due to electromagnetic, isospin-violating, and disconnected
contributions; (estimated to be around 2% for the n = 1 mo-
ment).

the leading vacuum polarization. This uncertainty also
accounts for corrections of order (q2

/⇤)2 and higher that
are only partially included by our analysis.

The taste structure of the ⇡⇡ vacuum polarization mat-
ters because its contribution to aµ is quite sensitive to the
pion mass (see Eq. (B25)) and pions of di↵erent taste
di↵er in mass. Taste-changing interactions normally lead
to small corrections that extrapolate smoothly to zero,
like ↵s(⇡/a) a

2, as the lattice spacing vanishes. This does
not work for the ⇡⇡ vacuum polarization with physical
pions, however, because its moments are non-analytic in
m⇡ (Eq. (B25) and the taste-changing e↵ects are com-
parable to the (physical) pion mass. This is why we use
chiral perturbation theory to remove the e↵ects of the
staggered pion masses in the ⇡⇡ vacuum polarization.
There are other e↵ects from taste-changing but we only
need correct contributions that are non-analytic in m⇡

(and large enough to matter); all other e↵ects will ex-
trapolate away as we take the lattice spacing to zero.
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TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Correlator fits (t⇤): 0.5%
m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.2%
ZV uncertainty: 0.2%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

FIG. 4: Bayesian probability distribution for aHVP,LO
µ (u/d)

(bars) compared with results from the least-squares fit
(dashed line).

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [37] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [38] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III. Note that our final result is 3.5% above the
extrapolated result from the raw data shown in Fig. 3;
most of that shift comes from corrections to the ⇡⇡ vac-
uum polarization in chiral perturbation theory.

We tested the validity of the least-squares fit that de-
termines our a

HVP,LO
µ (u/d) by replacing the fit with a

Bayesian expectation value (a 16-dimensional numerical
integration) over the distributions of the input data and
priors. The results, in Fig. 4, show that the least-squares
fit (dashed-line) agrees well with the probability distri-
bution from the corresponding Bayesian analysis (bars).
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FIG. 5: Our final result for aHVP,LO
µ from lattice QCD com-

pared to an earlier lattice result (also with u, d, s and c
quarks) from the ETM Collaboration [13], and to recent re-
sults using experimental cross-section information [5–8]. We
also compare with the result expected from the experimental
value for aµ assuming that there are no contributions from
physics beyond the Standard Model.

III. DISCUSSION/CONCLUSIONS

Adding results from our earlier calculations for other
quark flavours [14, 27], the connected contributions to
a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥ 1010 =

8
>>><

>>>:

599(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(9)

We combine these results with our recent estimate [28] of
the contribution from disconnected diagrams involving u,
d and s quarks, taking this as 0(9) ⇥ 10�10. This agrees
with, but has a more conservative uncertainty than, the
value obtained in [29]. We then obtain an estimate for the
entire contribution from hadronic vacuum polarization:

a

HVP,LO
µ = 667(6)(12) ⇥ 10�10 (10)

This agrees well with the only earlier u/d/s/c lattice
QCD result, 674(28) ⇥ 10�10 [13], but has errors from
the lattice calculation reduced by a factor of four. It
also agrees with earlier non-lattice results using exper-
imental data, ranging from (⇥1010): 694.9(4.3) [5] to
681.9(3.2) [7]. These are separately more accurate than
our result but have a spread comparable to our uncer-
tainty. New results from BESIII [39] may resolve this.

It is also useful to compare our result to the expecta-
tion from experiment. Assuming there is no new physics
beyond the Standard Model, experiment requires a

HVP,LO
µ

to be 720(7)⇥10�10. This value is obtained by subtract-
ing from experiment the accepted values of QED [40],

Error budget 
dominated by QED, 
isospin-breaking 
systematics, 1% 
each

Chakraborty et al, 
HPQCD 1703.05522 
improves these

much reduced 
dependence on ml, a2, 
volume - simple to fit.
Numerous tests of 
robustness …
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8 The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of
9 the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a

10 notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based
11 on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and
12 an unphysically heavy value of the u=d quark mass. We use HPQCD’s method of determining the
13 anomalous magnetic moment by reconstructing the Adler function from time moments of the current-
14 current correlator at zero spatial momentum. Our results lead to a total (including u, d and s quarks) quark-
15 line disconnected contribution to aμ of −0.15% of the u=d hadronic vacuum polarization contribution with
16 an uncertainty which is 1% of that contribution.

DOI:17

18 I. INTRODUCTION

19 The high accuracy with which the magnetic moment of
20 the muon can be determined in experiment makes it a very
21 useful quantity in the search for new physics beyond the
22 Standard Model. Its anomaly, defined as the fractional
23 difference of its gyromagnetic ratio from the naive
24 value of 2 [aμ ¼ ðg − 2Þ=2] is known to 0.5 ppm [1].
25 The anomaly arises from muon interactions with a cloud
26 of virtual particles and can therefore probe the existence of
27 particles that have not been seen directly. The theoretical
28 calculation of aμ in the Standard Model shows a discrep-
29 ancy with the experimental result of about 25ð8Þ × 10−10

30 [2–4] which could be an exciting indication of new
31 physics. Improvements by a factor of 4 in the experi-
32 mental uncertainty are expected and improvements in the
33 theoretical determination would make the discrepancy (if
34 it remains) really compelling [5].
35 The current theoretical uncertainty is dominated by that
36 from the lowest order (α2QED) hadronic vacuum polarization
37 (HVP) contribution, in which the virtual particles are
38 strongly interacting, depicted in Fig. 1. This contribution,
39 which we denote aμ;HVP, is currently determined most
40 accurately from experimental results on eþe− → hadrons
41 or from τ decay to be of order 700 × 10−10 with a 1%
42 uncertainty or better [3,4,6]. This method for determining
43 aμ;HVP does not distinguish the two diagrams of Fig. 1
44 because it uses experimental cross-section information,

45effectively including all possibilities for final states that
46would be seen if the two diagrams were cut in half.
47aμ;HVP can also be determined from lattice QCD calcu-
48lations using a determination of the vacuum polarization
49function at Euclidean-q2 values [7]. It is important that this
50is done to at least a comparable level of uncertainty to that

F1:1FIG. 1. The hadronic vacuum polarization contribution to the
F1:2muon anomalous magnetic moment is represented as a shaded
F1:3blob inserted into the photon propagator (represented by a wavy
F1:4line) that corrects the pointlike photon-muon coupling at the top
F1:5of each diagram. The top diagram is the connected contribution
F1:6and the lower diagram the quark-line disconnected (but con-
F1:7nected by gluons denoted by curly lines) contribution that is
F1:8discussed here. The shaded box in the lower diagram indicates
F1:9strong interaction effects that could occur between the two quark

F1:10loops.
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Hard to calculate but small. Suppressed by 
masses since 

see also RBC/UKQCD 1512.09054:-9.6(4.0) x 10-10

X

u,d,s

Qf = 0

324 HVP, as given in Eq. (8). Correlators are calculated out
325 to time slice t ¼ 47, which corresponds to 1.6 fm or 7=mρ
326 for these parameters, giving ample time for ground-state
327 properties to emerge and dominate the connected correla-
328 tors. We see that all of the disconnected contributions
329 become negative above a time slice around 10. Not
330 surprisingly Rll has the largest magnitude and Rss the
331 smallest. Rss becomes consistent with zero above time-slice
332 30, where Rsl also becomes small. Thus at large times the
333 disconnected contribution to the HVP is dominated by
334 the ll component. At shorter times there is considerable
335 cancellation between the off-diagonal ls piece and the
336 diagonal ll and ss pieces. Directly from this figure (and
337 taking into account the factor of 1=5 from electric charge
338 factors which is not included in the figure, see Sec. III) it is
339 clear that we do not expect the disconnected contribution to
340 aμ;HVP to amount to more than 1% of the connected ll
341 contribution.
342 In principle to determine the contribution of the dis-
343 connected correlators to aμ we simply need to determine
344 the time moments using Eq. (5). However Fig. 2 shows that
345 the correlators are too noisy at large times for this to be a
346 feasible approach. Instead we must fit the correlators to
347 their known physical behavior—and this requires making
348 combinations of connected and disconnected correlators
349 which are physical—and use the fit results at large time
350 values. This enables us to make use of the good statistical
351 accuracy at short to medium times to fix the long time
352 behavior more precisely.
353 We first test this by studying the connected correlators,
354 Cll and Css. The SU(2) isovector correlator, corresponding
355 to flavor combinations ðūγiu − d̄γidÞ=

ffiffiffi
2

p
, ūγid and d̄γiu

356 has no quark-line disconnected contribution in the SU(2)
357 limit. The ground state of the connected light vector
358 correlator Cll is then the ρ meson at large times. The
359 ground state of the Css correlator will be a version of the ϕ
360 meson in which no mixing with other flavorless vector
361 states is allowed. We expect this to be very close to the
362 physical ϕ meson because Dss is so small.

363We can test the robustness of our correlation function
364analysis which uses just a single current insertion, by
365comparing to the spectrum analyses of both the Hadron
366Spectrum and the HPQCD collaborations. A multiexpo-
367nential model

CfitðtÞ ¼
Xnexp

i¼0

b2i e
−Eit; ð14Þ

368where bi and Ei are the amplitudes and masses respectively.
369We use a Bayesian approach [25] to constrain the parameters
370taking a prior of 0.85$ 0.6 GeV on energy differences
371between the excitations and a width of 0.3 GeV on the
372ground-state mass. The amplitudes are given a prior of
3730.1$ 20 where the normalization of the correlators is such
374that the amplitudes of low-lying states are around 7–9. Our
375fit includes the full range of t except for the first three values
376and stabilizes after nexp ¼ 3 giving a ground-state mass in
377lattice units of amρ ¼ 0.1512ð4Þ and amϕ ¼ 0.1777ð2Þ.
378This is in good agreement with the Hadron Spectrum
379analysis in Ref. [12] which used a large number of fermion
380bilinear operators in a variational basis. The same ensembles
381were used in a study of P-wave I ¼ 1 ππ scattering which
382gives a resonance mass of atmR ¼ 0.15085ð18Þð3Þ [26]. In
383addition, the value of mρ at this value of mπ is close to that
384expected from the HPQCD analysis of results at lighter
385values of mπ [18].
386Using the fits above we can readily determine the Π̂j
387coefficients of Eq. (7). To define a correlation function for
388any t we combine the calculated correlator at short time
389separations with the model behavior of Eq. (14). We use

CðtÞ ¼
"
CdataðtÞ; t ≤ t%

CfitðtÞ; t > t%:
ð15Þ

390391From the calculation of the Π̂j we obtain the contri-
392bution to aμ;HVP using Eq. (1), with Q2

s ¼ 1=9 and
393Q2

l ¼ 5=9. We have tested that the results are insensitive
394to a number of variations of the method. These include:
395varying t% between20 and40; varying the total time length of
396the correlator used in the calculation of themoments from95
397upwards; varying the number of exponentials used in the fit
398result andvarying theorderof thePadéapproximantbetween
399[1, 1] and [2, 2]. We find the ratio of the s̄s connected
400contribution to aμ;HVP to that of the l̄l connected contribution
401to be 0.125. This is in reasonable agreement with a linear
402extrapolation of the HPQCD results to the value ofmπ being
403used here, giving a value of around 0.15.
404The isoscalar correlator, corresponding to flavor combi-
405nation ðūγiuþ d̄γidÞ=

ffiffiffi
2

p
, has the same connected corre-

406lator contribution as for the ρ but an additional quark-line
407disconnected contribution of 2Dll. The ground state of this
408correlator is, to a good approximation, the ω meson. The ω
409meson is believed to contain a small admixture of s̄s with a
410mixing angle of a few degrees and this is seen in the Hadron

F2:1 FIG. 2. Ratios of disconnected correlators, Dff 0 , to the con-
F2:2 nected correlator Cll, as a function of time in lattice units. Open
F2:3 black circles show the combination of disconnected correlators
F2:4 needed for the hadronic vacuum polarization contribution to
F2:5 aμ;HVP, described by Eq. (8).
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Estimate total  
(after fitting Hadspec 
data): 

For u/d can estimate from !/⇢
( 19⇧j

)
disc

( 59⇧j

)
conn

=
1

10

"
f2
!

/m2j+2
!

f2
⇢

/m2j+2
⇢

� 1

#

     only, gives -1/10⇡⇡
gives -1(1)%

aHV P,disc
µ =

0(9)⇥ 10�10



53.4(6) s
14.4(4) c
0.27(4) b

aHVP,LO
µ ⇥ 10�10

Total

add syst from 
disc. diags 
(1.5%) in quad 
with 1% QED, 
1% isospin

Combining numbers for a total 

3.5� discrepancy with no new physics

 640  650  660  670  680  690  700  710  720  730
aµ

HVP x 1010

aµ
HVP, no new physics

Jegerlehner
1511.04473
Benayoun et al
1507.02943
Hagiwara et al
1105.3149
Jegerlehner+Szafron
1101.2872

ETMC
1308.4327

HPQCD
1601.03071

599(11) u/d

667(6)(12)



Ongoing work planned with FNAL/MILC : 

• Finer and higher stats physical point connected u/d 
correlators

• isospin-breaking and QED effects, both in valence sector 
(see below for preliminary results) + in sea. 

• disconnected correlators using eigenvector deflation



Isospin-breaking  - connected u/d
• a=0.15fm, physical ml (tuned to          ) new higher stats 
(2000x16 sources so far ) ensemble.  
RBC’s truncated solver method reduces cost by factor 2. 
3 quark masses: ml, mu, md with mu

md
= 0.458

MILC 1606.01228
Fit and process simultaneously

D. Hatton et al

uncertainties are correlated, 
Qf fixed - shows mass effects 
only 

m⇡0

 530

 540

 550

 560

 570

 580

 590

 0  0.001  0.002  0.003  0.004  0.005

a µ
 (1

0-1
0 )

am 

mu ml md

Result: +1.0(3)% 
effect without ρ 
rescaling.  
0.3(3)% effect with ρ 
rescaling.  



QED effects D. Hatton, A. Lytle et al

s quark case on a=0.12 fm lattices. Quenched QED using 
BMW’s QEDTL scheme. Use unphysical e = 1 and 2/3 to 
amplify effect. 

meson masses increase, 
vector more than 
pseudoscalar. 

e =
1

3

Inc. QED effects in ZV 
using RI-SMOM scheme - 
tiny



Preliminary result : effect on                     is -0.3%aHV P,s
µ

Need to check s-mass tuning, systs in ZV, compare 
other lattice spacing, volume …

PRELIMINARY



Conclusion
www.physics.gla.ac.uk/HPQCD

• sub-1% uncertainties on lattice QCD calculations for 
HVP contribution to        are within sight.   aµ

• HPQCD has pinned down ‘connected’ s, c and b 
connected contribution to the HVP, up to small QED 
corrections (in progress). 

• Dominated by systematics from u/d case: finite vol/
staggered pion corrections plus QED and isospin-
breaking (in progress). Planned future work with FNAL/
MILC to improve.

• HPQCD u/d ‘connected’ result yields a total LO HVP of 
667(6)(12) x 10-10, 3σ from ‘no new physics’ scenario. 
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