Lattice study of finite size effect in the leading order of hadronic contribution to muon g-2

Eigo Shintani (RIKEN-AICS)

with T. Izubuchi, Y. Kuramashi, C. Lehner (PACS collaboration)

"First Workshop of the Muon g-2 Theory Initiative", Qcenter, IL, Jun 3--6, 2017

1. Introduction Target precision in lattice QCD

$\text{Err}[a_{\mu}^{\text{BNL}}] = 6.3 \times 10^{-10}$

Leading order of hadronic contribution (HLO)
 Integral of vacuum polarization from q ∈ [0, ∞]

Target precision < $I\% \sim O(Err[a_{\mu}^{BNL}])$

Dispersion theory (N_f=5) using R-ratio (e+e-) : $a_{\mu}^{HLO} = 688.6(4.3) \times 10^{-10} \Rightarrow 0.6 \%$ precision Jegerlehner, 1511.04473

 Next-to-leading order (HNLO) Integral of hadronic light-by-light diagram from q₁ ∈ [0, ∞], q₂ ∈ [0, ∞]

Target precision ~ 10% ~ O(Err[a_{μ}^{BNL}])

Model:

 $a_{\mu}^{\text{HLO}} = 10.6(0.3) \times 10^{-10} \Rightarrow \sim 3\%$

Prades et al., 0901.0306

1. Introduction Lattice works

1. Introduction Leading order of hadronic contribution

Hadronic vacuum polarization (HVP)

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= \int ds \quad \underbrace{\swarrow}_{Had} \times \quad \bigvee \underset{Had}{\checkmark} \vee \\ &= \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \left[\int_{m_{\pi}^2}^{s_{\text{cut}}} ds \frac{K(s)}{s} R_{\text{had}}^{\text{data}}(s) + \int_{s_{\text{cut}}}^{\infty} ds \frac{K(s)}{s} R_{\text{had}}^{\text{pQCD}}(s) \right] \\ &\quad K(s) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (s/m_{\mu}^2)(1-x)} \end{aligned}$$

Hagiwara, et al., J.Phys. G38,085003 (2011)

2. HVP on the lattice g-2 with Q integral

Euclidean momentum integral

Lautrup et al., Phys. Rep. 3 (1972), Blum, PRL91(2003)

$$a_{\mu}^{\text{HLO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty ds K_E(s) \hat{\Pi}(s), \quad \hat{\Pi}(s) = 4\pi^2 \left(\Pi(s) - \Pi(0)\right)$$
$$K_E(s) = \frac{1}{m_{\mu}^2} s Z(\hat{s})^3 \frac{1 - \hat{s} Z(\hat{s})}{1 + \hat{s} Z^2(\hat{s})}, \quad Z(s) = -\frac{\hat{s} - \sqrt{\hat{s}^2 + 4\hat{s}}}{2\hat{s}},$$

VPF tensor

$$\Pi_{\mu\nu} = \int e^{iQx} \langle V_{\mu}(x) V_{\nu}(0)$$

$$= (Q_{\mu}Q_{\nu} - Q^2)\Pi(Q)$$

$$V_{\mu}(x) = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d + \cdots$$

➢ Pade function (Q² < m_ρ²)
 ➢ Renormalization constant Π(0)

- given from extrapolation.
- > Q² integral from 0 -- ∞, but
 pQCD gives asymptotic function.

2. HVP on the lattice g-2 with t integral

Temporal integral

Bernecker, Meyer, EPL A47(2011)

$$a_{\mu}^{\text{HLO}} = \int_{0}^{\infty} W_{t}(t)G(t), \quad G(t) = \int d^{3}x \langle V_{i}(x)V_{i}(0) \rangle$$
$$\hat{K}(t) = \frac{2}{m_{\mu}t^{3}} \int_{0}^{\infty} \frac{d\omega}{\omega} K_{E}(\omega^{2}) \left[\omega^{2}t^{2} - 4\sin^{2}(\omega t/2)\right]$$
$$W_{t}(t) = 4\alpha^{2}m_{\mu}t^{3}\hat{K}(t)$$

Pros

- > On the lattice, $\langle VV \rangle$ (t) without momentum.
- Integral (summation) without extrapolation/interpolation.

Cons

- > Temporal integral from 0∞ , we need to know asymptotic function
- Temporal boundary effect, backward propagation
- Discrete sum.

Possible to involve the large uncertainty due to FV effect and lattice artifact.

2. HVP on the lattice Studies of finite volume

Aubin et al., PRD93(2016)

- > Lowest-order SChPT gives VPF tensor: $\Pi_{\mu\nu}(q)$
- \succ 10% -- 15% discrepancy between $a_{\mu}^{HLO}[A_{I}]$ and $a_{\mu}^{HLO}[A_{I}^{44}]$

consistent with lattice calculation (L=3.8 fm, 0.22 GeV pion, m_{π} L=4.2)

- Gounaris-Sakurai model Wittig (2016), Mainz 1705.01775
 By using time-like pion form factor, g-2 can be described in infinite volume.
 - > 5% FV effect in L=4 fm, 0.19 GeV pion, m_{π} L=4
- Anisotropic study

ChPT

Lehner (2016)

- > Coordinate space integral along temporal or spatial direction.
- > Discrepancy is a_{μ}^{HLO} [spatial] a_{μ}^{HLO} [temporal] ~ 3%.

Direct lattice study (PACS)

Comparison between two volumes in physical pion at fixed a

 \blacktriangleright L > 5 fm, m_{π}L \gtrsim 4

3. Strategy PACS 96⁴ and 64⁴ at a=0.08 fm

PACS group recently generates two gauge ensembles:

- Nf=2+1 O(a) improved clover fermion + Stout smearing
- > a=0.083 fm, and two lattice sizes 64⁴ and 96⁴
- > (almost) physical pion,

L=5.4 fm, 0.14 GeV (m_{π} L=3.8),

L=8.1 fm, 0.145 GeV (m_πL=6.0)

PACS, 1511.09222

3. Strategy Computation with AMA

- Optimized AMA with SAP + deflation
 - Domain-decomposition, 6⁴ domain size is chosen.
 - Deflation field, $N_s = 50, 5$ SAP cycles in single precision.
 - Deflated SAP + GCR for exact and approximation
 - Exact: ~30 GCR iteration (outer double precision loop)

• Approximation: 5 fixed GCR iteration, $|r| \sim O(10^{-5})$

Small cost for a generation of deflation field.

⇒ no need huge storage (or memory) to store eigenvector

 3x faster than lowmode deflated CG (using 750 modes)

N = 40 defl

N_=64

5 GCR iter fixed.

w/o IO.

exact

w/o IO, 600 CG iter fixed,

N_=64

N = 40 defl

exact

Blum et al., PRD88(2013), PRD91(2015), Mainz, NPB914 (2017)

Luscher, JHEP07 (2008)

96⁴

3. Strategy Study of backward state propagation

- Extension of temporal length
 - To study backward state effect, we extend temporal length.
 - Using duplicated gauge configurations for 64⁴ lattice
 - Suppress the backward state effectively (consistently using periodic anti-periodic fermion)
 - Important check of finite t effect in t integral

4. Preliminary result High statistics in PACS configurations

96⁴ : 50 configs., 89,341 meas (light) [m_{π}=0.145 GeV, L=8.1 fm] 64⁴: 95 configs., 192,067 meas (light) [m_{π}=0.14 GeV, L=5.4 fm]

4. Preliminary result Momentum dependence

$$\Pi^{\text{Pade}}(Q) = \Pi(0) + Q^2 \Big(A_0 \delta_{n,m+1} + \sum_{k=1}^m \frac{A_k}{Q^2 + B_k} \Big)$$

4. Preliminary result Q integral and volume dependence

4. Preliminary result Vector-vector correlator

Effective mass

Propagator

Plateau appears above 1.3 fm, and its mass is below rho mass.

Separating from single exponential function.

 \Rightarrow Double exponential fitting

 \Rightarrow lattice data implies that two-pion state appears above 1.3 fm.

4. Preliminary result Integrand along temporal direction

4. Preliminary result Backward state contribution

4. Preliminary result t integral

• The maximum t in the integral.

- The t cut of tail in the integral
- The region of integral is changed depending on volume.

4. Preliminary result Lattice artifact

4. Summary Summary and future works

- Start HVP computation with two volumes in PACS
 - Direct lattice comparison for FV effect without models.
 - > Analysis with both methods, Q-integral and t-integral
 - On 5 fm in physical pion, there is positive and large FV effect, especially due to backward state.
 - Study on physical pion is very important to correctly estimate uncertainties.
- Future
 - One more large volume and the infinite volume limit.
 - Continuum limit
 - Isospin breaking

Volume sum

21

• Precision of A^{-1} and D_{Λ}^{-1} Number of deflation field: N_s Those can control the precision, e.g. small Λ and large n_{cy}

 Use in a generation of deflation field and projection

- Input parameters
 - Degree of SAP cycle: n_{cy}
 - SAP domain size: Λ_x , Λ_y , Λ_z , Λ_t

 $x = D^{-1}b \simeq M_{\rm sap}b$: preconditioner

Domain decomposition

$$R_{\Lambda} = \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n}$$

Mainz, NPB914 (2017)

Luscher, Comp.Phys.Comm.156 (2004)

 $\overset{\circ}{\cdot} \Lambda \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{\circ}{\cdot} \overset{\circ}{\wedge} \overset{\circ}{\cdot} \overset{$

2. HVP on the lattice FV study in Mainz

Finite-volume effects: TMR analysis

- * Input quantity: timelike pion form factor $F_{\pi}(\omega) = |F_{\pi}(\omega)| e^{i\delta_{11}(k)}$
- * Use Gounaris-Sakurai parameterisation and evaluate $|F_{\pi}(\omega)|$, $\delta_{11}(k)$ for given (m_{π}, m_{ρ}) of a given gauge ensemble
- * Finite-volume effects in HVP dominated by long-distance contribution
- * For $m_{\pi} = 190$ MeV, L = 4.0 fm, $m_{\pi}L = 4.0$:

 $a_{\mu}^{\rm hvp}(\infty)-a_{\mu}^{\rm hvp}(L)=5.2\%$

- * Procedural variations: assign uncertainty of $\approx 10\%$
- ⇒ Dynamical theory of finite-volume effects in terms of m_{ρ}/m_{π} and $m_{\pi}L$

Hadronic contributions to (g-2) 34

Hartmut Wittig

Wittig, lattice 2016

4. Preliminary result Size effect in one-loop ChPT

